

CLIMATE RESEARCH OVERVIEW

Theme Lead: Dr. Daniel Murphy

StoryMaps under this theme

- → 2.3 Greenhouse Gases and Short-Lived Climate Forcers
- \rightarrow 2.2 Aerosols and Their Role in Climate
- → 2.1 Aerosol–Cloud Interactions

NOAA CHEMICAL SCIENCES LABORATORY

Introduction

NOAA: Understand and predict changes in climate, weather, oceans, and coasts

OAR: Detect changes in the ocean and atmosphere

What we do at CSL:

- Modeling of aerosol-cloud interactions
- Climate properties of atmospheric aerosol
- Emission sources, budgets, and trends for greenhouse gases
- Laboratory measurements for ozone depleting substances

My diagram of science at a NOAA lab

Outline

- Not a summary of everything in the StoryMaps
- Use a few of the StoryMap highlights as illustrations
- Case study of large eddy simulations
- Case study of dust
- Case study of aerosol optical properties

Sustained efforts: Greenhouse gases

Cite as: R. A. Alvarez et al., Science 10.1126/science.aar7204 (2018).

Assessment of methane emissions from the U.S. oil and gas supply chain

Ramón A. Alvarez^{1*}, Daniel Zavala-Araiza¹, David R. Lyon¹, David T. Allen², Zachary R. Barkley³, Adam R. Brandt⁴, Kenneth J. Davis³, Scott C. Herndon⁵, Daniel J. Jacob⁶, Anna Karion⁷, Eric A. Kort⁸, Brian K. Lamb⁹, Thomas Lauvaux³, Joannes D. Maasakkers⁶, Anthony J. Marchese¹⁰, Mark Omara¹, Stephen W. Pacala¹¹, Jeff Peischl^{12,13}, Allen L. Robinson¹⁴, Paul B. Shepson¹⁵, Colm Sweeney¹³, Amy Townsend-Small¹⁶, Steven C. Wofsy⁶, Steven P. Hamburg¹

Methane:

Multiple field missions over ~ 10 years

- Major US production regions
- Rice-growing regions
- Urban area
- Major leak

CSL makes sustained commitments to understand greenhouse gases.

NOAA CSL Science Review, 23-25 February 2021

StoryMaps 2.3.2 and 2.3.3

Sustained efforts: Greenhouse gases

Ozone:

Ten-year effort CSL co-chair CSL lead authors on major papers

Gaudel, A, et al. 2018. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. *Elem Sci*. Anth. 6: 39. DOI: https://doi.org/10.1525/elementa.291

RESEARCH ARTICLE

Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

A. Gaudel^{1,2}, O. R. Cooper^{1,2}, G. Ancellet¹, B. Barret⁴, A. Boynard^{15,3}, J. P. Burrows⁶,
C. Clerbaux³, P.-F. Coheur⁷, J. Cuesta⁸, E. Cuevas⁶, S. Doniki⁷, G. Dufour⁴, F. Ebojie¹⁰,
G. Foret⁸, O. Garcia¹¹, M. J. Granados-Muño2^{12,13}, J. W. Hannigan⁴¹, F. Hase¹⁵,
B. Hassler^{1,23,6}, G. Huang¹⁷, D. Hurtmans⁷, D. Jaff^{2,18,19}, N. Jones²⁹, P. Kalabokas²¹,
B. Kerridge²⁰, S. Kulawik^{12,14}, B. Latte^{21,27}, T. Leblanc¹², E. Le Flochmoen⁴, W. Lin²⁵,
J. Liu^{36,27}, X. Liu¹⁷, F. Mahieu²⁷, A. McClure-Begley¹², J. L. Neu²³, M. Osman²⁰, M. Palmé⁴,
H. Petropavlovskikh¹³, R. Quere^{10,19}, N. Rahpoe²³, A. Rozanov²¹,
M. G. Schult^{21,21,23}, J. Schwab³, R. Siddans²², D. Smale³⁰, M. Steinbacher³⁴,
H. Tanimoto³⁵, D. W. Tarasick³⁶, V. Thouret⁴, A. M. Thompson²⁷, T. Trickl¹⁸,
E. Weatherhead¹⁻², C. Wespes⁷, H. M. Worden³⁹, C. Vigouroux⁴⁰, X. Xu⁴¹,

SCIENCE ADVANCES | RESEARCH ARTICLE

CLIMATOLOGY

Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere

Audrey Gaudel¹*, Owen R. Cooper¹, Kai-Lan Chang¹, Ilann Bourgeois¹, Jerry R. Ziemke^{2,3}, Sarah A. Strode^{2,4}, Luke D. Oman², Pasquale Sellitto⁵, Philippe Nédélec⁶, Romain Blot⁶, Valérie Thouret⁶, Claire Granier^{1,6}

CSL makes sustained commitments to understand greenhouse gases.

Foundational measurements: Light-absorbing carbon

An intercomparison of aerosol absorption measurements conducted during the $SEAC^4RS$ campaign

B. Mason^{a,b,*}, N. L. Wagner^{a,b}, G. Adler^{a,b}, E. Andrews^{a,b}, C. A. Brock^a, T. D. Gordon^{a,b,**}, D. A. Lack^{a,b}, A. E. Perring^{a,b,***}, M. S. Richardson^{a,b}, J. P. Schwarz^{a,b}, M. A. Shook^c, K. L. Thornhill^c, L. D. Ziemba^d, and D. M. Murphy^a

StoryMap 2.3.4

Light absorption due to black carbon is an essential climate forcing measurement

CSL developed a photoacoustic instrument

- a fundamental technique
- our design is used at several other labs
- and we developed automated calibrations

CSL led an in-flight comparison to a GML instrument

CSL is also a leader in developing and deploying SP2 black carbon

CSL measures fundamental climate parameters.

Foundational measurements: Light-absorbing carbon

An intercomparison of aerosol absorption measurements conducted during the $SEAC^4RS$ campaign

B. Mason^{a,b,*}, N. L. Wagner^{a,b}, G. Adler^{a,b}, E. Andrews^{a,b}, C. A. Brock^a, T. D. Gordon^{a,b,**}, D. A. Lack^{a,b}, A. E. Perring^{a,b,***}, M. S. Richardson^{a,b}, J. P. Schwarz^{a,b}, M. A. Shook^c, K. L. Thornhill^c, L. D. Ziemba^d, and D. M. Murphy^a

StoryMap 2.3.4

Light absorption due to black carbon is an essential climate forcing measurement

CSL developed a photoacoustic instrument

- a fundamental technique
- our design is used at several other labs
- and we developed automated calibrations

Met Office/University of Exeter improved our design. We implemented their improvements.

CSL measures fundamental climate parameters.

Critical mass of expertise: Tropical cloud nuclei

LETTER 17 OCTOBER 2019 | VOL 574 | NATURE | 399

A large source of cloud condensation nuclei from new particle formation in the tropics

Christina J. Williamson^{1,2}e, Agnieszka Kupc^{2,3}, Duncan Axisa^{4,9}, Kelsey R. Bilsback⁵, ThaoPaul Buf⁶, Pedro Campuzano-Jost^{1,7}, Maximilian Dollner³, Karl D. Froyd^{1,2}, Anna L. Hodshire³, Jose L. Jimenez^{1,7}, John K. Kodros^{5,10}, Gan Luo⁸, Daniel M. Murphy², Benjamin A. Nault^{1,7}, Eric A. Ray^{1,2}, Bernadett Weinzierl³, James C. Wilson⁴, Fangqun Yu⁸, Pengfei Yu^{1,2,11}, Jeffrey R. Pierce⁵ & Charles A. Brock² Cloud formation is influenced by the availability of cloud nuclei (CCN)

No commercial instruments measure the relevant size range (~ 60 nm) with sufficient time response and sensitivity for aircraft measurements.

Multiple processes contribute to new particle formation.

Atmospheric dynamics modulate the growth to CCN.

"Working here I can walk down the hall and talk to an expert on everything I need."

CSL has the expertise to tackle complex problems.

NOAA CSL Science Review, 23-25 February 2021

StoryMap 2.1.1

Climate-relevant focus. I arge eddy simulations

=> must consider susceptible cloud fields

A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

Elisa T. Sena^{1,2}, Allison McComiskey³, and Graham Feingold²

2016

What is the impact of anthropogenic aerosol on low-level clouds?

Extended StoryMap 2.1.4

In last 5 years:

- Improved microphysics
- Dynamical buffering
- Feedbacks via winds and sea-salt aerosol
- Metastable states for the cloud field
- Lessons for large-scale models
- Statistically representative aerosols and meteorology

CSL aerosol-cloud research addresses major problems.

Climate-relevant focus: Large eddy simulations

Franziska Glassmeier^{1,2,3}*, Fabian Hoffmann^{3,4,5}, Jill S. Johnson⁶, Takanobu Yamaguchi^{3,4}, Ken S. Carslaw⁶, Graham Feingold⁴

2021

Extended StoryMap 2.1.4

What is the impact of anthropogenic aerosol on low-level clouds?

Going beyond case studies and scenarios:

- many LES simulations
- build an emulator to map those simulations to real-world situations
- one conclusion: short-term perturbations like ship tracks overestimate the impact of extended forcings

CSL aerosol-cloud research addresses major problems.

Case study: Smoke in the upper troposphere

ARTICLES https://doi.org/10.1038/s41561-020-0586-1

Widespread biomass burning smoke throughout the remote troposphere

G. P. Schill[©]^{1,2}^{IZI}, K. D. Froyd[©]^{1,2}, H. Bian^{3,4}, A. Kupc[®]^{1,2,5}, C. Williamson[®]^{1,2}, C. A. Brock[®]¹, E. Ray[®]^{1,2}, R. S. Hornbrook⁶, A. J. Hills⁶, E. C. Apel⁶, M. Chin⁴, P. R. Colarco⁴ and D. M. Murphy¹

Froyd et al., 2019 Schill et al., 2020 Upper troposphere aerosol composition

Recent CSL work:

- PALMS single particle mass spectrometer
- + optical particle counters
- + custom sampler to improve statistics
- + innovative data analysis

Sustained effort at CSL resulted in totally new measurements.

NOAA CSL Science Review, 23-25 February 2021

StoryMap 2.2.3

Case study: Dust in the upper troposphere

250 -В Dust nucleation Number of cirrus cases suppressed 200 -150· 100 -50 0.1 100 1000 10 N_i, ice number concentration (L⁻¹

Extended StoryMap 2.2.3

Dust is crucial to the formation of cirrus clouds

Previously:

>> 100 papers about dust impacts on cirrus
many studies of dust near the surface
Almost no measurements of dust at cirrus altitudes

Here: forward trajectories with a detailed cirrus formation model with/without measured dust.

Model without dust (blue) Dust often reduces ice number concentration by factors ~100 (brown)

But sometimes there isn't enough dust (green)

CSL has made unique progress on a difficult and important problem.

Case study: Global aerosol properties

A new global map of aerosol light scattering (Chuck Brock)

- custom 10-channel counter for 3 to 60 nm (CSL)
- two heavily modified commercial optical counters (CSL)
- under-wing probe (U. Vienna)
- refractory black carbon (CSL)
- PALMS composition > 0.14 μ m (CSL)
- AMS composition < 0.25 μm (U. Colorado)

Builds on decades of expertise

CSL makes basic but crucial measurements requiring multiple techniques.

NOAA CSL Science Review, 23-25 February 2021

StoryMap 2.2.3

Case study : Global aerosol properties

StoryMap 2.2.3

Checks on the aerosol properties:

- Check dry extinction against a precise and accurate cavity ring-down instrument (SOAP)
 - a custom instrument developed at CSL
- Check phase function against an independent imaging nephelometer
 - completely redesigned and rebuilt at CSL

We have confidence in these measurements.

Case study : Global aerosol properties

StoryMap 2.2.3

Future directions

- Continued incorporation of lessons from small-scale cloud models into larger problems
- Climate properties of the background and volcanic atmospheric aerosol
- Collaboration with NASA on regular aerosol measurements
- Continued budgets for greenhouse gases
- National resource for properties underlying global warming potentials

