

Atmospheric Chemistry at the Earth System Research Laboratory Wrap Up and Thoughts on Our Future

A. R. Ravishankara

- Highlights
- What we could not cover here
- Our path of progress
- Our future science

James H. Butler

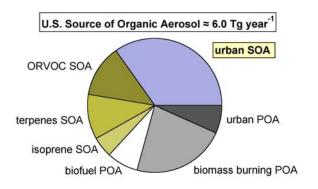
- A few words on Integration
- Society in transition
- Mapping future research to evolving needs
- Focus areas and approaches
- Goals, approaches, and Themes

ESRL Atmospheric Chemistry Review January 29-31, 2008 ~ Boulder, Colorado

What You Heard

Highlights from Regional Air Quality, Stratospheric Ozone, and Climate

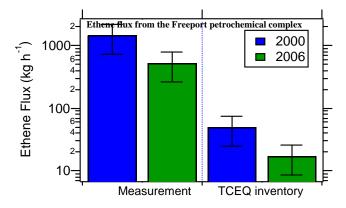
A few highlights to remind you of what you heard!


What You Heard: Regional Air Quality

End-to-end stakeholder involvement to address AQ issues

Role of nighttime chemistry for nitrogen oxides and then ozone:

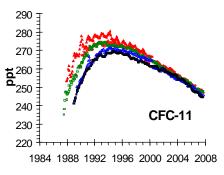
– What happens at night matters for the next day's ozone and for its precursors!

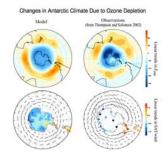


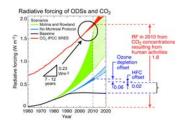
Identification of the mismatch in calculated and observed Secondary Organic Aerosol (SOA): Linkages to biogenic and anthropogenic precursors:

- A major emerging issue for health and climate,
- Chemistry matters in controlling aerosols.

Top-down evaluations point to several weakness in current emission inventories:

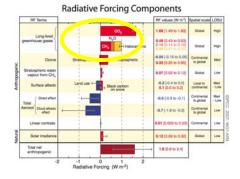

 Emission inventory critical for regions and states to manage Air Quality.

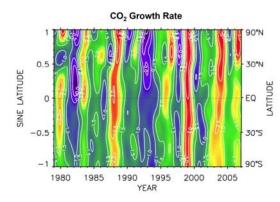



What You Heard: Stratospheric Ozone

Leadership in the O₃ layer assessment and shepherding through the "accountability phase"

- Long-term accurate monitoring of ODSs and their substitutes have enabled:
 - 1. Showing that ODSs are decreasing (MP works!);
 - 2. Advances in process-level understanding have enabled better prediction of when the ozone layer will recover.
- "Testing" of substitutes has continued to enable a smooth transition from ODSs and to better alternatives.
- The connection between stratospheric ozone changes and the tropospheric temperature (climate) has been identified and solved a key problem in climate change attribution.
- Quantification of the contribution of banned ozone depletion substances to climate in comparison to Kyoto Protocol.

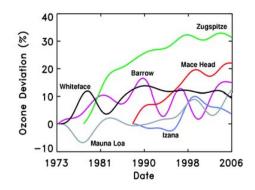


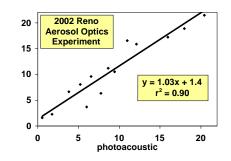

What You Heard: Climate

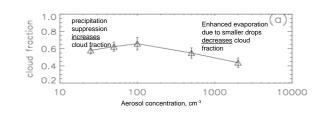
Leadership roles in IPCC assessment and a role in the dawn of a new era

Long-term accurate measurements of CO₂ and non-CO₂ long-lived greenhouse gases enabled:

- 1. Accurate calculation of climate forcing in IPCC AR4, with all its implications;
- 2. Better quantified regions of CO_2 uptake, with major implications for carbon cycle understanding;
- 3. Carbon tracker helps data assimilation and development of predictive capabilities;
- 4. The "forensics" of ozone depletion substances what comes from where.

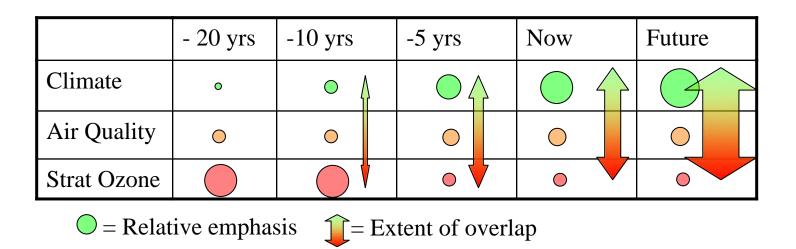





What You Heard: Climate, contd.

Role of <u>tropospheric ozone</u>, an important GHG, in forcing and feedbacks:

- 1. Development of process understanding to enable better quantification of abundance and distribution;
- 2. Better understanding of the long range transport in ozone distribution (including contribution to AQ issues).
- The role of <u>aerosols</u> in climate through scattering and absorption and via their influence on clouds:
 - 1. Long-term accurate monitoring of aerosols provided key data to reduce uncertainties in aerosol forcing;
 - 2. Development and utilization of new state-of-the-art instruments has enabled better characterization of aerosols and enhanced ability to predict: (a) optical properties and (b) composition;
 - 3. Key field studies and modeling have enabled better definition of the influence of aerosols on clouds, and hence climate.


What You Did Not Hear

Approximately 80% of the work over the last four years (550 papers worth)!

- You did not hear about some important areas that were not the main emphases of this review:
- Details of Boundary Layer meteorology relevant to Air Quality and climate;
- Details of Surface Radiation measurements and interpretations;
- Some key fundamental studies in dynamics, chemistry, and meteorology of the atmosphere.

The material on the website has the "rest of the story!"

Our Progress and Changes In The Past

- Significant changes in emphases
 - Dictated by societal needs
 - Dictated by scientific progress
- Significant increase in "synergy"
- Major advances in technology, data quality & acquisition, analyses, and interpretation

We have evolved and will continue to evolve to address major environmental questions.

Where We Are Headed

Addressing the needs of the post-IPCC AR4 era

Climate change and attribution is still a key

- Regional attributions
- Attributions of parameters other than just T (e.g., precipitation)

More information for adaptation/mitigation issues

- Need brand new science
- Need improvements in current science

(Living with a problem, requires more knowledge than "amputating" a problem!)

Continued expansion of Air Quality research and development of decision support information

Continue to shepherd the ozone layer through the accountability phase

Where We Are Headed

More emphasis on "one atmosphere approach:"

- Needed for decision making (e.g., climate-Air Quality);
- Significant opportunities for scientific breakthroughs;
- Enhanced synergy and gain in efficient/effective policy.

Science at the interfaces:

- Science interfaces (e.g., UT/LS, emissions, deposition processes, ...);
- Climate-Air Quality connections;
- Water vapor... the "orphan" in the climate game;
- Policy interfaces.

Emerging emphasis on one Earth System approach:

- Connections with other components (e.g., chemistry module for an Earth System model);
- Needed by Society.

Some Details of Planned Near-Term Activities

Take it away Jim