Some Highlights of ESRL Contributions to Assessments

Susan Solomon

- 1. Introduction and Background: what is assessment, and what is successful assessment?
- 2. WMO/UNEP Ozone Assessments
- 3. Other Assessments (e.g., CCSP, AQ, IPCC special report on ozone/climate)
- 4. IPCC WG1 AR4
- 5. Summary and Outlook for the Future

need to be a set of the set of th

Issues Related to Hydrofluorocarbons and Perfluorocarbons

ntergovernmental Panel on Climate Change echnology and Economic Assessment Panel

Ξ

LIMATE CHANGE 2007 He physical science basis

What is an Assessment? Science Input to Key Policy Decisions

Elements of a Successful World-Class Assessment

Assessment processes slowly build strength and impact over time (e.g., the 20 years of ozone assessment and ozone policy) through:

- Hard-hitting and policy-relevant science advances
- A strong process of rigorous review, author selection, and approval, stringently followed
- Strong leadership capable of engendering the support and confidence of the science community and of the policy community
- Content that is useful and credible both to the policy community and to the science community
- Connection to policy process

Science Assessment of Ozone Depletion-2006 Ozone Depletion: 2006

Cochairs:

Ayité-Lô Ajavon (Togo) Daniel L. Albritton (USA) Robert T. Watson (USA)

Marie-Lise Chanin, CNRS, France

Susana Diaz, CAIC, Argentina

John Pyle, Univ. of Cambridge, UK

Theodore Shepherd, Univ. of Toronto, Canada

A. R. Ravishankara, NOAA, USA

National Oceanic and Atmospheric Administration National Aeronautics and Space Administration United Nations Environment Programme World Meteorological Organization European Commission

- Worldwide effort involving over 300 scientists from Article-5 and non-Article 5 countries - as Co-chairs, Lead Authors, Co-authors, Contributors, and Reviewers
- Delivered to the Parties in response to their request (Terms of Reference, 15th MOP, Decision XV/53, November 2003)
- Fully reviewed three times by the international scientific community
- Is the sixth in the series of the SAP's scientific assessments for the Parties. ESRL has played major roles in all of these reports, which have guided ozone policy decisions.

The Major Findings and Conclusions of the 2006 Science Assessment

ODS production

ODS in the atmosphere

Ozone levelsmeasured and predicted

UV levelsmeasured and predicted

The Montreal Protocol is working!

We have entered the "accountability phase" with this issue!

Some Key ESRL Science Inputs

The Protocol Is Working: ODS Changes

There are early signs that the ozone layer is starting its expected recovery

Changes in ozone affect temperature and circulation of the stratosphere and troposphere. Important to discussions of how much halocarbon warming may or may not have been offset by ozone cooling.

Some Key ESRL Science Inputs

Table 8-2. Direct Global Warming Potentials for selected gases.

Industrial Designation or Common Name	Chemical Formula	Radiative Efficiency ¹	Lifetime (vears)	Global Warming Potential for Given Time Horizon		
		(W m ⁻² ppbv ⁻¹)	¥ /	20 years	100 years	500 years
Carbon dioxide	CO ₂	1.41 × 10 ⁻⁵ ²		1	1	1
Nitrous oxide	N ₂ Õ	3.03×10^{-3}	114 ³	289	298	153
Chlorofluorocarbons						
CFC-11	CCl ₃ F	0.25	45	6,730	4,750	1,620
CFC-12	CCl_2F_2	0.32	100	10,990	10,890	5,200
CFC-13	CCIF ₃	0.25	640	10,800	14,420	16,430
CFC-113	CCl ₂ FCClF ₂	0.30	85	6,540	6,130	2,690
CFC-114	CClF ₂ CClF ₂	0.31	300	8,040	10,040	8,730
CFC-115	CClF ₂ CF ₃	0.18	1700	5,310	7,370	9,990
Hydrochlorofluorocarbo	ns					
HCFC-21	CHCl ₂ F	0.14	1.7	530	151	46
HCFC-22	CHClF ₂	0.20	12.0	5,160	1,810	549
HCFC-123	CHCl ₂ CF ₃	0.14	1.3	273	77	24
HCFC-124	CHClFCF ₃	0.22	5.8	2,070	609	185
HCFC-141b	CH ₃ CCl ₂ F	0.14	9.3	2,250	725	220
HCFC-142b	CH ₃ CClF ₂	0.20	17.9	5,490	2,310	705
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	0.20	1.9	429	122	37
HCFC-225cb	CHCIFCF2CCIF2	0.32	5.8	2,030	595	181
Hydrofluorocarbons						
HFC-23	CHF ₃	0.19 4	270	11,990	14,760	12,230
HFC-32	CH_2F_2	0.11 4	4.9	2,330	675	205
HFC-41	CH ₃ F	0.02	2.4	323	92	28
HFC-125	CHF ₂ CF ₃	0.23	29	6,340	3,500	1,100
HFC-134	CHF ₂ CHF ₂	0.18	9.6	3,400	1,100	335
HFC-134a	CH ₂ FCF ₃	0.16 4	14.0	3,830	1,430	435
HFC-143	CH_2FCHF_2	0.13	3.5	1,240	353	107
HFC-143a	CH ₃ CF ₃	0.13	52	5,890	4,470	1,590
HFC-152	CH_2FCH_2F	0.09	0.60	187	53	16
HFC-152a	CH ₃ CHF ₂	0.09	1.4	437	124	38
HFC-227ea	CF ₃ CHFCF ₃	0.26 4	34.2	5,310	3,220	1,040
HFC-236cb	CH ₂ FCF ₂ CF ₃	0.23	13.6	3,630	1,340	407
HFC-236ea	CHF ₂ CHFCF ₃	0.30	10.7	4,090	1,370	418
HFC-236fa	CF ₃ CH ₂ CF ₃	0.28	240	8,100	9,810	7,660
HFC-245ca	CH_FCF_CHF,	0.23	6.2	2,340	693	211
HFC-245fa	CHF,CH,CF,	0.28	7.6	3,380	1,030	314
HFC-365mfc	CH ₃ CF ₂ CH ₂ CF ₃	0.21	8.6	2,520	794	241
HFC-43-10mee	CF3CHFCHFCF2CF3	0.40	15.9	4,140	1,640	499
Chlorocarbons						
Chlorocarbons Methyl chloroform	CH ₃ CCl ₃	0.06	5.0	506	146	45
Chlorocarbons Methyl chloroform Carbon tetrachloride	CH ₃ CCl ₃ CCl ₄	0.06 0.13	5.0 26	506 2,700	146 1,400	45 435

Some Key ESRL Science Inputs

Table 8-6. Comparison of scenarios and hypothetical cases ^a: the year when EESC drops below the 1980 value for both midlatitude and polar vortex cases, and integrated EESC differences (midlatitude case) relative to the baseline (A1) scenario. Note that the polar recovery times have not been given in previous Assessments; interpretation of any comparison between these numbers and recovery times given in previous Assessments requires an understanding of the large role played by the different transport times from the torposphere to the stratospheric midlatitude and polar vortex regions.

Scenario and Cases		Percent Difference in integrated EESC relative to baseline scenario for the midlatitude case		Year (x) when EESC is expected to drop below 1980 value	
			Midlatitude		Antarctic vortex ^b
	-	$\int_{1980}^{x} EESC dt$	$\int_{2007}^{x} EESC dt$		
Scer	narios				
A1:	Baseline scenario			2048.9	2065.1
Cas	es ^a of zero production from 2007 onward	of:			
P0:	All ODSs	-8.0	-17.1	2043.1	2060.3
	CFCs	-0.1	-0.3	2048.8	2065.0
	Halons	-0.2	-0.5	2048.8	2065.1
	HCFCs	-5.5	-11.8	2044.4	2062.2
	Anthropogenic CH3Br	-2.4	-5.1	2047.9	2063.7
Cas	es a of zero emissions from 2007 onward of	Ê:			
E0:	All ODSs	-19.4	-41.7	2034.0	2049.9
	CFCs	-5.3	-11.5	2045.0	2060.3
	CH ₃ CCl ₃	-0.1	-0.2	2048.9	2065.1
	Halons	-6.7	-14.4	2045.6	2061.9
	HCFCs	-7.3	-15.7	2043.7	2061.8
	CCl ₄	-1.3	-2.9	2048.5	2064.9
	Anthropogenic CH ₃ Br	-2.4	-5.1	2047.9	2063.7
Cas	es ^a of full recovery of the 2007 banks of:				
B0:	All ODS	-12.9	-27.8	2040.8	2056.7
	CFCs	-5.2	-11.3	2045.1	2060.4
	Halons	-6.7	-14.3	2045.7	2062.0
	HCFCs	-1.9	-4.1	2048.4	2064.8
CH3	Br sensitivity:				
Sam	e as A1, but CH3Br anthropogenic				
	emissions set to 20% in 1992 °	3.1	6.6	2050.6	2067.7
Sam	e as A1, but zero QPS production				
	from 2015 onward	-1.5	-3.2	2047.9	2063.7
Sam	e as A1, but critical-use exemptions				
	continued at 2006 level	1.9	4.0-4.7	2050.1	2067.0

^a Importance of ozone-depleting substances for future EESC were calculated in the hypothetical "cases" by setting production or emission to zero in 2007 and subsequent years or the bank of the ODS to zero in the year 2007 alone. These cases are not mutually exclusive, and separate effects of elimination of production, emissions, and banks are not additive.

^b This metric specifically for Antarctic polar vortex ozone depletion has not been shown in any previous ozone Assessment.

In the baseline scenario, this fraction was assumed to be 30% in 1992, with a corresponding emission fraction of 0.88 of production. In this alternative scenario, an anthropogenic fraction was assumed to be 20%, with an emission fraction of 0.56 of production. In both scenarios, the total historic emission was derived from atmospheric observations and a lifetime of 0.7 years.

Co-Chairs: A. R. Ravishankara, J. A. Pyle, P. Newman, Ayité-Lô Ajavon

The <u>Terms of Reference</u> from the Parties TBD, but expect elements of the following at least:

Assess ozone's impact on climate change

 Assess how much benefit to the ozone layer and the climate is obtained by the early HCFC phaseout

Key Technical Support: Christine A. Ennis, ESRL CSD

SAFEGUARDING THE OZONE LAYER AND THE GLOBAL CLIMATE SYSTEM

Issues Related to Hydrofluorocarbons and Perfluorocarbons

A Surprising Element in The Search for **Options: Ozone-Climate Interactions IPCC (2005)** Solomon, co-chair **IPCC WG1** Support by WG1 TSU ESRL authors and reviewers **Special Report has** shown many win-win solutions

Intergovernmental Panel on Climate Change Technology and Economic Assessment Panel

Halocarbon Emissions

- Continuing emissions of CFC-11 and CFC-12 from banks...values in 2002 about a third of the maxima in late 1980s. Why? Banks in existing equipment (refrigeration, AC, foams, etc.)
- Contrast with e.g., CH3CCl3 and CFC-113, where emissions are now <5% of the max. Why? Solvents - so limited banks.

Halocarbon Emissions

Combined CO₂equivalent emissions from halocarbons:

~7.5 Gt near 1990, about 33% of that year's CO₂ emissions from global fossil fuel burning

~2.5 Gt near 2000, about 10% of that year's CO₂ emissions from global fossil fuel burning (25 Gt)

Change in use of CFCs: from 'leaky' to 'tight'

This change implies a large change in the role of banks

Business-as-usual banks and emissions

• Large bank of CFCs. Growing banks of HCFCs and HFCs in future (up to 10 Gt CO2 eq in 2015). What about the banks?

• New early phaseout of developing country HCFC-22 production addressed the very thorny problem of HFC-23 emission as a by-product, illuminated in SROC.

Business-as-usual banks and emissions

• Large bank of CFCs. Growing banks of HCFCs and HFCs in future (up to 10 Gt CO2 eq in 2015). What about the banks?

• New early phaseout of developing country HCFC-22 production addressed the very thorny problem of HFC-23 emission as a by-product, illuminated in SROC.

CCSP: Connecting with our national process

SAP 2.4 will use the findings from the latest assessments to convey the implications of ozone depletion on the US and <u>to establish the US</u> <u>contributions to this global issue</u> in so far as possible.

- Primary sources of information are the IPCC/TEAP "Special Report on Ozone and Climate (SROC; 2005) and the WMO/UNEP O₃ Assessment (2007).
- It will utilize new information that has become available since the publication of these two international assessments, such as the IPCC Fourth Assessment Report (2007) and a few recent peer reviewed publications.

SAP 2.4 provides a good example of how we can take advantage of the international assessments (for which we contribute science and assessment time) for our specific (i.e., national) needs. SAP 2.4: Trends In Emissions of Ozone Depleting Substances, Ozone Layer Recovery, and Implications for Ultraviolet Radiation Exposure

Author Team and Their Roles:

Dr. A. R. Ravishankara, NOAA

Dr. Michael J. Kurylo, NASA

Dr. Richard M. Bevilacqua, NRL / DoD Dr. Jeff Cohen, USEPA Dr. John S. Daniel, NOAA Dr. Anne R. Douglass, NASA Dr. David W. Fahey, NOAA Dr. Jay R. Herman, NASA Dr. Terry Keating, USEPA Dr. Malcolm K. Ko, NASA Dr. Stephen A. Montzka, NOAA Dr. Paul A. Newman, NASA Dr. V. Ramaswamy, NOAA Dr. Anne-Marie Schmoltner, NSF Dr. Richard S. Stolarski, NASA Dr. Ken W. Vick, USDA

Overall Lead

Overall Lead

Scientific Content Scientific Content Scientific Content Scientific Content Scientific Content **Scientific Content** Scientific Content Scientific Content

Key Finding: The US contribution to stratospheric chlorine

Some Other Issues

- How large is the US contribution to the banks, and to 'leakage' from the banks (i.e., the future?)
- How much of the US bank is 'accessible' (e.g., auto garage supplies are more accessible than foams in existing buildings)? Recovery and destruction of CFC banks could be an option for further protection of ozone and climate.

Texas Regional Air Quality Assessment

TCEQ

What did we do?

NOAA led two major field experiments in East Texas, in 2000 and 2006, to learn the causes of high ozone levels in the region. This work was highlighted in subsequent assessments provided to the State of Texas at their request.

What did we establish through research/assessment?

Texas emission inventories substantially underestimated (by a factor of 10 - 100) routine emissions of reactive petrochemicals (especially very reactive alkenes).

What was the policy impact?

The State of Texas modified its " NO_x only" emission reduction strategy to include reductions in reactive VOCs from petrochemical plants.

What was the economic impact?

The more effective option for managing ozone precursor emissions in Houston is estimated to save the State of Texas over \$ 9 Billion and ~ 65,000 jobs by 2010. (G. Tolley and B. Smith, Cleaning Up Houston's Act: An Evaluation of Alternative Strategies, University of Chicago)

What's next?

The policy-relevant findings from the 2006 experiment and the subsequent assessment (major lead: Dave Parrish) are currently being considered in the development of follow-on regulations for ozone precursors in East Texas (including not only Houston but also Dallas, Beaumont/Port Arthur).

NOAA science shows petrochemical plants have a greater impact on Houston's O_3 problem than previously believed.

20 Years of IPCC WG1

Governments require information on climate change for negotiations

The IPCC formed in 1988 under auspices of the United Nations

Function is to provide assessments of the science of climate change as input to the United Nations Framework Convention on Climate Change (UNFCCC)

Substance and leadership of IPCC WG1 reports in the hands of scientists

Input to actions in Rio de Janeiro and Kyoto

Acceptance of science foundation in Bali - a starting point on a long road ahead

Next IPCC assessment? TBD, discussion in Budapest, April, 2007

Are Future Science Assessments Needed for Climate Policy, As In Ozone Policy?

Ozone hole discovered

Ozone hole explained; also depletion in mid-lats

Currently, Kyoto implies less global (all countries) emission reduction than the original Montreal agreement in 1987.

What is needed regarding climate science and assessment to inform e.g. possible future 50-80% emission reductions?

Preparation and Review of the IPCC WG1 AR4

- Each report is an assessment of the state of understanding based upon peer-reviewed published work. IPCC assesses published research but does not do research.
- Each assessment goes through multiple reviews and revision and re-review over a period of years.
- Informal draft prepared, comments sought from 6-12 outside experts for each chapter (Oct 2004 - Mar 2005). Formal first order draft (FOD) reviewed by about 600 reviewers worldwide (Sept -Nov 2005). Formal second order draft (SOD) re-reviewed by about 600 experts worldwide and by dozens of governments (April-May 2006). Govt comments on revised Summary for Policy Makers (Oct-Nov 2006). WG1 received and considered over 30000 comments in total.

builds upon past assessments and incorporates new resindings from the past six years of research. Advances nelude large amounts of new data, more sophisticated nalyses of data, improvements in physical understand nd simulation in models, and more extensive explorat of uncertainty ranges.

- Summary for Policy Makers approved wordby-word by 113 govts in Paris in Feb, 2007. Provides a unique set of robust findings agreed by all governments.
- Co-chairs: Solomon and Qin
- Technical Support: IPCC WG1 Technical Support Unit (Manning, Marquis, Averyt, Tignor, Miller)
- Many ESRL authors and reviewers
- Bringing the discipline of science to policy

Many Changes Signal A Warming World

Human and Natural Drivers of Climate Change: Unprecedented [IPCC, 2007]

• Dramatic rise of CO₂ in the industrial era, changing the energy budget, and 'forcing' the climate in a new way not experienced in many thousands of years.

Changes in Greenhouse Gases from ice-Core and Modern Data

Interpreting Trends and Changes in Carbon Dioxide, Methane, Nitrous Oxide, and a Host of Other Gases

Interpreting Trends and Changes in Carbon Dioxide, Methane, Nitrous Oxide, and a Host of Other Gases

Drivers of Climate Change [1750 to Present-day]

(W m⁻²)

Global-average

Seminal ESRL contributions include:

G

GI

too

G

Loc

to c

Key observations and interpretation of CO_2 , N₂O, CH₄, halocarbons, strat and trop ozone, aircraft, stratospheric water, and aerosol forcings.

Also: Lab and modelling of RT, lifetimes, GWPs. And more...

Global-mean Anthro RF positive → Warming influence very high confidence

Measurements of Aerosol-Cloud Interactions: Implications for the Aerosol First Indirect Effect

Slope determined by: aerosol number conc., size/composition cloud turbulence, etc.

Estimate of the aerosol first indirect effect in the AR4 considered surface as well as satellite-derived slope of drop radius-aerosol relationship

Attribution and Patterns of Forcing

- Attribution is linked to timespace patterns of responses to the array of forcings (e.g, aerosol effect on NH/SH ratio, ozone effect on stratosphere/troposphere ratio....)
- Simulation of the observed pattern and relationship to forcings in space and time (including stratospheric ozone, tropospheric ozone, aerosols, volcanoes, etc.) is key to the success of climate attribution.
- A rigorous statistical process in which forcing patterns are a fundamental input.

Are Humans Responsible?

Global

Are Humans Responsible?

Global

Are Humans Responsible?

IPCC (1995):

"Balance of evidence suggests discernible human influence"

IPCC (2001):

"Most of warming of past 50 years *likely* (odds 2 out of 3) due to human activities"

IPCC (2007):

"Most of warming *very likely* (odds 9 out of 10) due to greenhouse gases"

Global Temperature anomaly (°C) 1.0 0.5 0.0 1900 1950 2000 Year models using only natural forcings models using both natural and anthropogenic forcings observations

Continental Attribution

Continental scale warming is *likely* (2 out of 3 odds) due to increases in anthropogenic greenhouse gases

Future: More regional -> more info on forcings in space and time essential

Projections of Future Changes in Climate

Projected Patterns of Precipitation Changes

New in AR4: Rainfall in the SPM at a new level of prominence. Projected drying in much of the subtropics, more rain in higher latitudes, <u>continuing</u> <u>the broad pattern of rainfall changes already observed</u>. Some places projected to get up to 20% drier, some 20% wetter, in this BAU scenario.

Future: Understand relationships of rainfall, heat waves, sea ice.....to GHG, ozone, aerosols...the forcing/attribution/projection challenge is just beginning. Many opportunities/needs for ESRL.

Summary and Outlook

• ESRL has played a key role in shaping science assessments, and the assessments in turn have shaped our work and ourselves.

• ESRL has heritage and leadership in international and national science assessment processes: how to do the challenging task of science assessment that affects public policy

• ESRL science inputs in observations, lab studies, and analysis/modelling have been major in the areas of ozone depletion, climate change, and AQ

• ESRL is well placed to continue to make major contributions to future assessments needed to inform policy decisions in the 21st century.