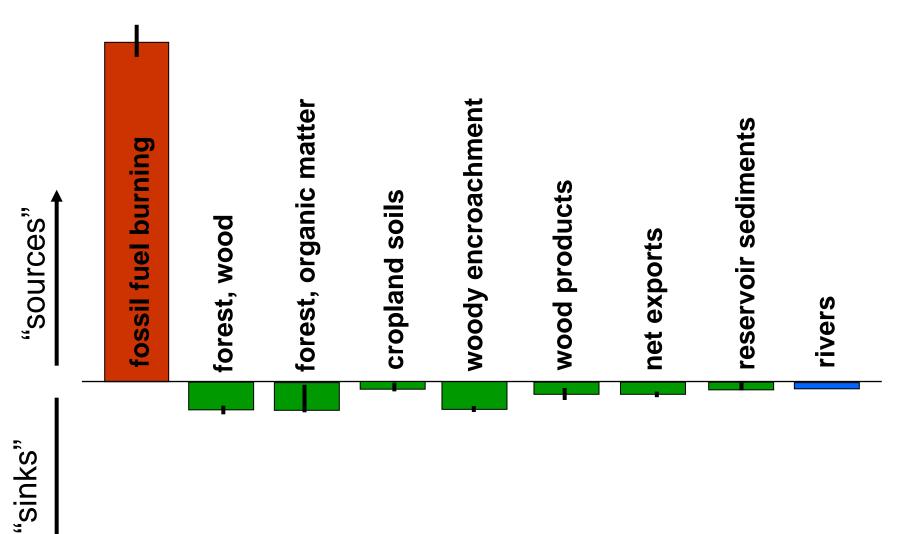


Future plans and directions

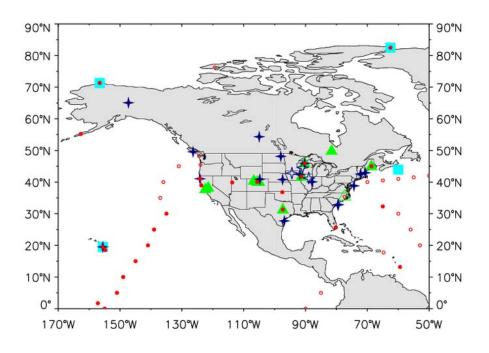
Pieter Tans


Carbon Cycle Group

ESRL Atmospheric Chemistry Review January 29-31, 2008 ~ Boulder, Colorado

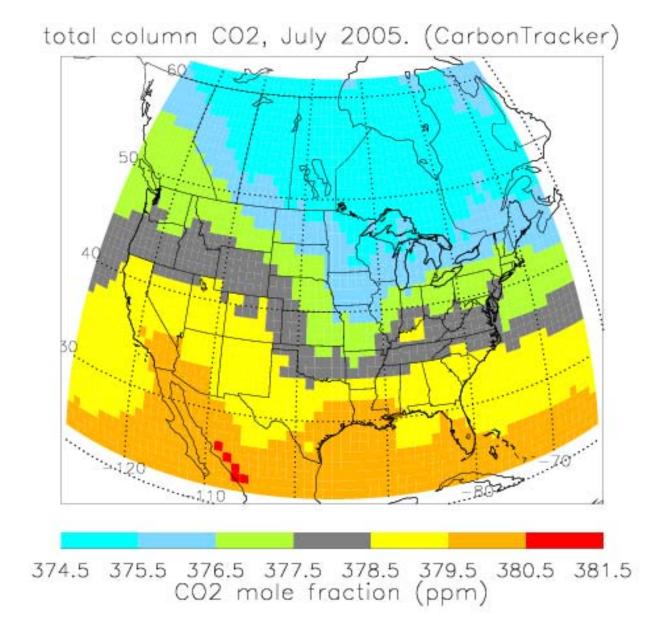
What is society likely to need that we can supply?

- Ongoing diagnoses as the earth system changes unfold
- Objective verification of emissions on national, regional, and local scales
- Assessment of mitigation solutions, proposed or actual

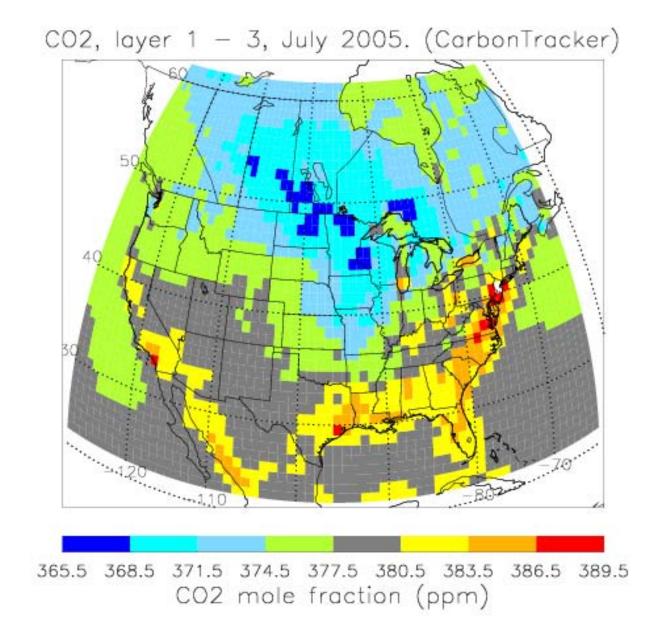


Tentative carbon "budget" for the U.S.

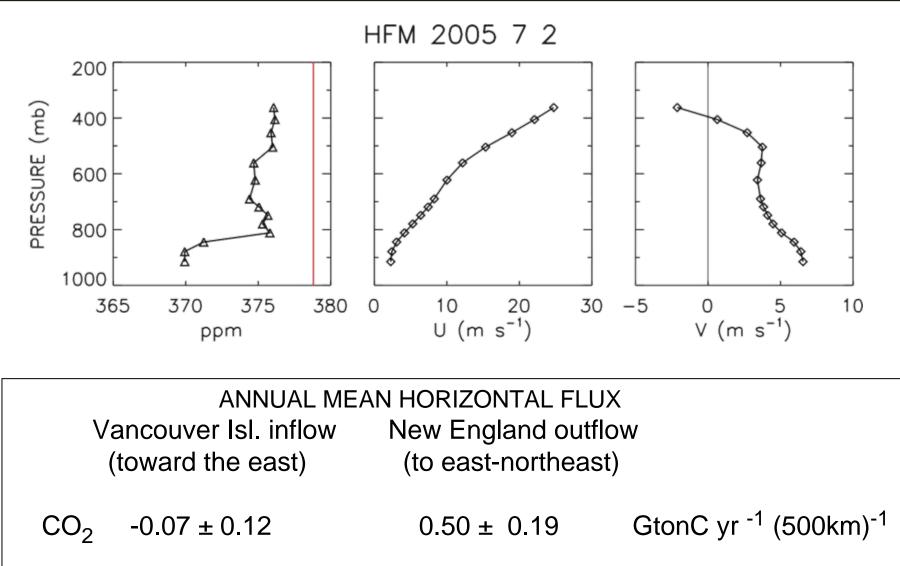
Source: Pacala et al., Science (2001)


1.7 billion metric ton FF C yr⁻¹ (US) and 5-day residence time \Rightarrow ~0.7 ppm excess total column CO₂ leaving toward North Atlantic

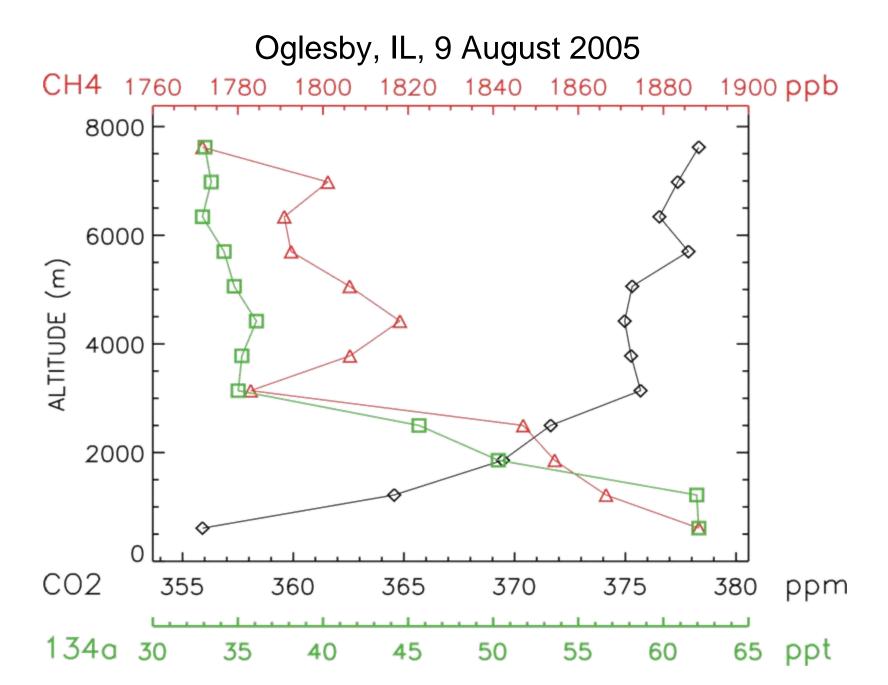
observed atmospheric variability							
	1 sigma (ppm)	altitude					
Mauna Loa	0.5	3.4 km					
Niwot Ridge	1.0	3.5 km					
vertical	1.1 -1.6	3 km					
profiles							
towers	3.5	0.4 km					
continental	~20	10 m					
surface							

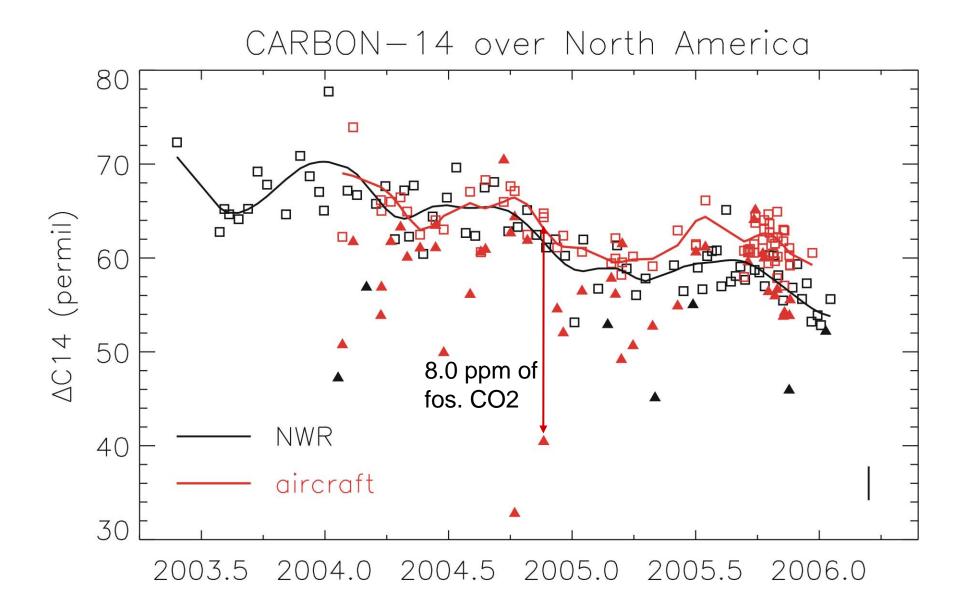

source: Ken Masarie

WHAT DOES CO2 OVER NORTH AMERICA LOOK LIKE?


carbontracker.noaa.gov

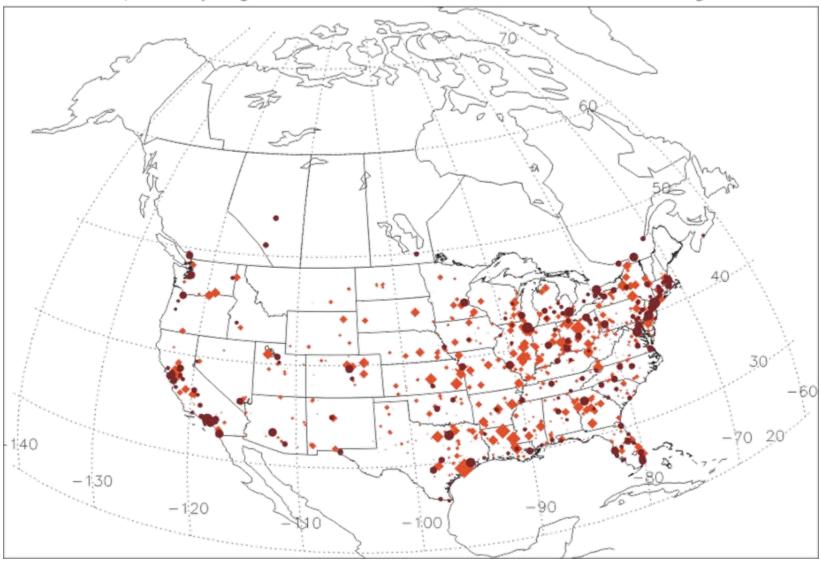
WHAT DOES CO2 OVER NORTH AMERICA LOOK LIKE?


carbontracker.noaa.gov

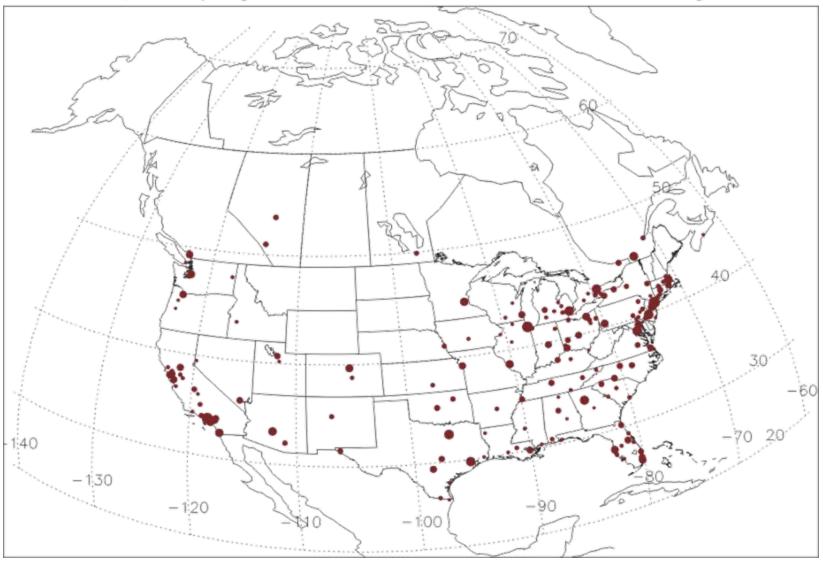

THE NEED FOR VERTICAL DATA

CH₄ 8.2 ± 1.6 12.5 ± 1.7 Tg yr ⁻¹ (500km)⁻¹

SF₆ 161 ± 39 367 ± 58 ton yr ⁻¹ (500km)⁻¹



Source: Jocelyn Turnbull and Scott Lehman, CU-INSTAAR


HOW MANY OBSERVATION SITES ARE NEEDED?

quantifying emissions from fossil fuel burning

HOW MANY OBSERVATION SITES ARE NEEDED?

quantifying emissions from fossil fuel burning

			REQ	UIR	Same Air Comparison (CSIRO-NOAA)					
					CGO ICP (weekly)		92-07	-0.03 ± 0.21 (453)		
					CGO ICP (weekly))	2006	-0.13 ± 0.16 (36)*
					Sausage (bi-monthly)			nly)	2006	-0.04 ± 0.11 (18)
				RR (2-3 years)				2005	-0.03 ± 0.04 (3)	
					NOAA pair agreement (nent (92-07	$\langle \Delta \rangle = 0.09$ (186)
	0.6	Flask Air	CSIRO / N	OAA	Compa	risons	CSIRO -	NOAA		
	0.4	RR (L) RR (M) RR (H) Sousage (L)	0 0 0		0			-		
mol ⁻¹)	0.2	Sousage (M) Sousage (H)					0	-	1 Starter	
$\Delta CO_2 \ (\mu mol mol^{-1})$	0.0							9-01-19	6	
0 ₂ ()	-0.2		• • • • • • • • • • • • • • • • • • •	ବ ୫ ବ ୖ		30° 56	05°8°	Cycle, 200		
Δ(-0.4	- -	o	•		° 6	0 9	M ESRL Carbon		
	-0.6 19	90	1995	200	0	2005	<u>таг</u> 5	 2010		

YEAR

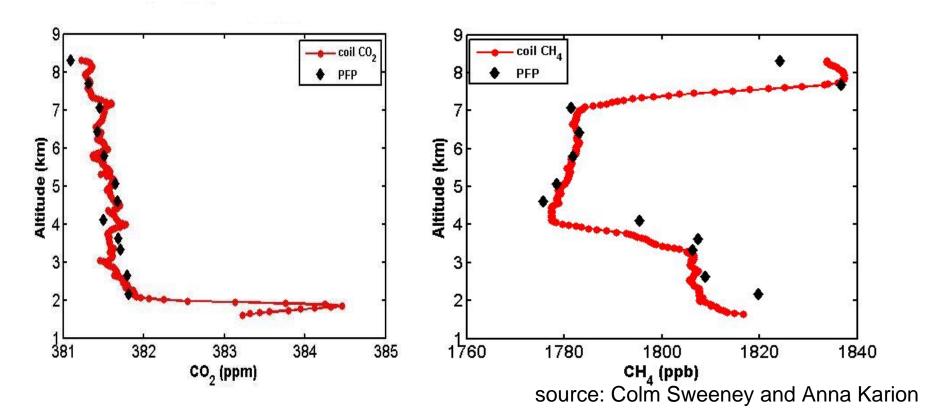
source: Ken Masarie

main objectives of observing system:

- 1. Quantification of CO2 emissions from fossil fuel burning on global to regional scales.
- 2. Early detection and quantification of "surprises" such as emissions of CH4 and CO2 resulting from warming of permafrost.
- 3. Understanding trends in natural sources/sinks, both managed and unmanaged.

Essential elements of the approach:

- *multi-species, especially carbon-14*
- very high accuracy for long-lived species
- continuous measurements of CO2, CH4, CO in boundary layer
- vertical profiles, to decrease sensitivity of results to transport biases
- use of high-resolution chemical transport models
- data assimilation with regional driver variables of the carbon cycle
- *duplication by independent laboratories as well as methods*
- need more robust instrumentation


Longer -lived gas		Charten lived a				
Compound	lifetime (yr)	Shorter-lived gases				
CFC-115	1700	Compound	lifetime (yr)			
CFC-13	640	*COS	2 to 3			
CFC-114	300	*HFC-152a	1.4			
HFC-23	270	*methyl chloride	1.0			
*CFC-12	100	*methyl bromide	0.7			
*CFC-113	85	*chloroform	0.41			
*H-1301	65	*dichloromethane	0.38			
HFC-143a	52	*dibromomethane	0.33			
*CFC-11	45	*PCE	0.27			
HFC-125	29	*chloroethane	0.08			
HFC-227ea	34	*bromoform	0.07			
*CCI ₄	26	*methyl iodide	0.02			
*H-2402	20	*carbon disulfide	short			
*HCFC-142b	18	*propane	short			
*H-1211	16	*n-butane	short			
*HFC-134a	14	*i-pentane	short			
*HCFC-22	12	*n-pentane	short			
HFC-134	9.6	*benzene	short			
*HCFC-141b	9.3	(Italicized numbers represent a local lifetime for				
HFC-365mfc	8.6	short-lived gases)				
HCFC-124	5.8	* NOAA calibration scale exist	S			
*CH ₃ CCI ₃	5	Sou	urce: Steve Montzka			

How can we continue to assure the required quality (comparability) of the measurements when there are hundreds of sites and many institutions involved?

- maintain partnerships, national and international; entrain and educate new participants; collaborate with air quality community
- full and prompt availability of all data and methods
- promote continuing calibrations as well as comparisons between in-situ analyzers and flask samples
- data management is paramount, incl. automated data exchange, automated QC algorithms that generate warnings

Automated air samples versus AirCore

