1	ICARTT measurement comparisons
2	Final implementation plan
3	(5/27/2004)
4	
5	Introduction
6	
7	Goal. The goal of comparison exercises planned for the 2004 ICARTT campaign
8	is to create a unified observational data set from measurements acquired from multiple
9	aircraft, ground, and ship platforms. To achieve this goal, comparisons are planned to
10	help establish data comparability between the various platforms, and to verify that
11	different analytical approaches are mutually consistent within quantifiable uncertainties.
12	Planned measurements include a wide variety of in situ and remotely sensed gas-phase
13	chemical species, aerosol chemical and physical data, radiative effects, and
14	meteorological parameters. These data will be acquired using a variety of techniques,
15	each with specific instrumental accuracy and precision. Quantifying data uncertainty

16 establishes an objective basis upon which subsequent scientific interpretation can be17 founded.

18

19 *Scope*. This effort requires coordination between the multiple participating 20 organizations of ICARTT, and will primarily involve side-by-side measurement 21 opportunities between combinations of aircraft, ship, and ground stations located in and 22 between North America and Europe. In particular, comparison opportunities are planned 23 that will link the platforms participating in the ITCT-Lagrangian-2k4 task of IGAC. 24 While further comparisons of these data sets to satellite retrievals and model output are 25 equally important, such analyses will involve the entire 2004 data set and will be carried 26 out primarily by other ICARTT working groups. This document describes the protocol 27 for acquiring, evaluating, and disseminating the results of side-by-side data comparison 28 activities for all participating platforms exclusive of satellite and model data.

29

30 Organization and formality. A small working group, with one representative
 31 from each major participating organization, has been identified; a list of delegates is

available <u>here</u>. This group will be responsible for developing comparison strategies, will
act as referees, and will attend to the logistical details required for the comparisons.
However, this group will solicit input, suggestions, and guidance from all participants in
the 2004 field campaign, and the active participation of interested parties is greatly
encouraged. Close cooperation with the <u>Aircraft and Ship</u> working group is also planned
to best integrate the field comparison exercises into other research goals of ICARTT and
with the science plans of individual participating organizations.

8 The comparisons are envisioned as semi-formal exercises, which can be used in 9 part to help identify any recoverable errors in time to correct them during the field 10 campaign. For the field comparisons, "field-quality" data accompanied by estimated 11 uncertainties will be submitted independently to the working group. A goal for data 12 turnaround of 24 hours after the comparison exercise has been set; this goal can be 13 relaxed to accommodate the exigencies of field operations. Data from instruments 14 utilizing a post-flight analysis step, e.g., GC measurements of whole-air canister samples, 15 are not typically readily available on these timescales in the field. These data will be 16 compared in the same fashion, but paced by the normal data turnaround rate for these 17 instruments.

18 After all readily available data for a given comparison are submitted (ideally 19 within 24 hours) the flight data will be made accessible to all study participants. This 20 provides for an "informal, but blind" comparison process, agreed upon by ICARTT study 21 participants. The following day, the ICARTT comparison data manager (Gao Chen, from 22 NASA Langley Research Center) will also post the comparison data in graphical form – a 23 time series and an x-y plot for each measurement – to facilitate their comparison. 24 (Details of the comparison data exchange procedure are outlined in **2. Field Campaign**: 25 Data Exchange and Availability section, later in this document).

These comparison plots will be updated post-campaign as the data sets and their associated uncertainties are refined. Finally, the working group, in conjunction with the measurement PIs, will draw consensus conclusions from the final data sets regarding the comparability of the measurements. These final side-by-side data, plots, and conclusions will be posted on a public area of the ICARTT measurement comparison web site.

31

1	Outline. Three phases are loosely defined for planning purposes: pre-campaign
2	(Fall 2003 through Spring 2004), field campaign (Summer 2004), and post-campaign
3	(Fall 2004 through Spring 2005). Working group tasks during the pre-campaign phase
4	include exchange of standards and coordination of ground comparisons of
5	instrumentation, where possible. During the summer 2004 field campaign, multiple
6	comparisons between the platforms will be carried out, preliminary data exchanged and
7	evaluated, and the comparison results posted (password-protected, but accessible to all
8	study participants) on the ICARTT web site. Post-campaign tasks will include analysis
9	of the final data sets and assessment of the comparability of data from the different
10	platforms. Dissemination of results of these comparison exercises will include posting of
11	the final comparison data and analyses in a public area of the web site, as well as a
12	presentation of the summarized results at the data workshop planned for April 2005.
13	Details of the planned tasks for each of these three phases are given below.
14	
15	
16	Measurement comparison tasks.
17	
18	1. Pre-campaign
19	
20	A. Standards exchange. Exchange of standards is planned to aid in harmonizing
21	instrument calibrations across the study platforms. These are offered as aids to help put
22	instrument calibration on a common basis; we encourage participants to take advantage
23	of these if it would be useful to you. If the timing, logistics, or other factors make
24	sampling from these standards a burden, however, there is no requirement to participate
25	in this standards exchange, and there is certainly no penalty for not doing so.
26	
27	Several kinds of standards are available and their uses are described below.
28	
29	• Shippable standards: NOAA-AL is providing certified, high-pressure, low-
30	ppmv-level standard compressed gas mixtures of NO, $SO_2 + CO$, and CO_2 (each with an
31	associated regulator), to participating investigators. Eric Apel of NCAR-ACD has

1 donated a VOC transfer standard containing low-ppmv levels of the following 2 compounds: methane, ethane, ethene, acetylene, propane, propene, butane, benzene, 3 toluene, acetone, acetonitrile, isopropyl nitrate, HFC-134a, CFC-113, CCl₄, and CO. Interested parties should contact Eric Williams (eric.j.williams@noaa.gov) at NOAA-AL 4 5 to arrange scheduling of these compressed gas cylinder shipments. 6 For lower-level VOC standards exchange, including whole-air samples, Elliot 7 Atlas (eatlas@rsmas.miami.edu) and Don Blake (drblake@uci.edu) have offered to 8 prepare and circulate exchange cylinders; please contact them directly to arrange 9 shipping of these VOC standard cylinders.

10

11 A short turnaround period, ca. 1 week, is requested of each investigator to permit 12 all groups to have an opportunity to compare these transfer standards to their own in-13 house calibration standards. Currently it is planned to have a single set of standards serve 14 for both the North American and European contingents. If international shipping time 15 and cost is prohibitive, a separate set of tanks might be circulated between the European 16 groups. Trish Quinn of NOAA-PMEL has volunteered to provide liquid standards for 17 detector calibration of PILS-IC and filter measurements of soluble inorganic ions on 18 aerosol particles. Groups interested in obtaining liquid standards of, e.g., Na, NH_4 , K, 19 Mg, Ca, MSA, Cl, Br, NO₃, and/or SO₄ should contact Trish directly at 20 Patricia.K.Quinn@noaa.gov.

21

22 • Non-shippable or developmental standards: Creating and delivering known 23 amounts of other chemical and aerosol species has been demonstrated, but these typically 24 remain research-grade devices requiring an experienced operator. Some advance 25 coordination and planning will likely be required to successfully and meaningfully 26 interface these new calibration devices with different instruments. We provide a partial 27 list below of calibration devices that have been offered to be made available to other 28 interested participants. In many cases, the easiest opportunity for sampling from these 29 devices may come during the field campaign phase. Please contact the PIs listed below 30 for more details and to organize an opportunity to sample from these standards.

31

Species	Contact	Email
Aerosol number, size, and	C. Brock	charles.a.brock@noaa.gov
chemical composition		
HNO ₃	A. Neuman	john.a.neuman@noaa.gov
NH ₃	J. Nowak	john.b.nowak@noaa.gov
HO _x	W. Brune, C.Cantrell	brune@essc.psu.edu
		cantrell@ucar.edu

1

2 • Centralized national and international calibration facilities: Accepted central 3 facilities exist to calibrate or evaluate measurements of, e.g., CO₂, O₃, and actinic flux. 4 Some research groups already reference their CO₂ standards to the NOAA-CMDL scale. 5 Many O₃ measurements are based on UV absorption, which as a primary measurement 6 cannot be calibrated; however, national facilities often provide a reference measurement 7 against which the output of field instruments can be compared. While O₃ reference 8 instruments and standard-output lamps are potentially transportable, we refer the 9 individual investigators to the existing national and international calibration facilities for 10 these reference standards.

11

B. *Direct comparison of measurements*. Running instruments from different groups side-by-side in the laboratory or in a field setting is an excellent way to test instrument performance before the 2004 summer field campaign. Because of the logistics and time involved, this is more easily done for some instruments than for others; this sort of comparison will be left up to the various investigators to arrange as possible.

C. Sampling coordination and planning. Coordinating the sampling details, where possible, of study instrumentation may substantially improve the comparability of ambient data from different platforms. For example, small differences in inlet transmission as a function of aerosol size, and especially of relative humidity at the sampling point, can potentially affect data from otherwise identical instruments. Further, tabulating instrumental sampling conditions can help to understand potential differences between *in situ* and remotely-sensed aerosol properties. Knowledge of instrumental time response may also be useful in comparing gas-phase chemical data between platforms.
 For non-continuous gas chromatographic (GC) measurements or whole-air canister
 sampling, synchronizing sample times (at least for the duration of the comparison
 periods) will substantially improve data overlap.

5 The primary constraint on sampling details and timing will certainly be the 6 science goals determined by each participating investigator and organization. However, 7 prior coordination of, e.g., aerosol size cuts, between ICARTT platforms may 8 substantially enhance the utility of the combined data set while still fulfilling individual 9 science goals. For example, the various groups measuring aerosol number, size, chemical 10 composition, and optical properties aboard the NOAA WP-3D and the NOAA ship 11 Ronald H. Brown have agreed on a 1.0-micron aerodynamic cut-off diameter to separate 12 accumulation and coarse mode particles to facilitate combining data sets from several of 13 their instruments. To facilitate knowledgeable instrument comparisons, and coordinate 14 sampling details where possible, we'll draft and circulate *brief* instrument questionnaires 15 to all instrument Pis before the summer field phase of the joint missions.

16

17 2. Field campaign

18

19 • Generating comparable data. Data taken during wingtip-to-wingtip aircraft 20 flight legs, or low-level aircraft overflight of ground or ship locations, can permit a direct 21 comparison of instrument performance. Ideally, ambient levels are encountered that test 22 each instrument over a wide range of parameters, e.g., mixing ratio, altitude, water vapor, 23 and potential interferences. Prior experience in comparing continuous, fast-response gas-24 phase instrumentation suggests these criteria can often be met by spending between 15-30 25 minutes in level flight at different altitudes, e.g., one in the clean free troposphere and 26 one in the more polluted continental boundary layer.

An example below shows quantitative agreement for NO data taken by two
aircraft flying in formation in the Houston metropolitan area in September 2000,
sampling over a wide range of ambient parameters. While altitude changes were small,
this comparison flight leg (data between the vertical dashed lines) sampled the clean free
troposphere, a polluted urban and industrial plume, and the clean marine boundary layer,

1 all within 20 minutes. Despite very high spatial variability of ambient NO mixing ratios, 2 both aircraft were clearly sampling the same air masses at the same time, suggesting that 3 quantitative comparison of these and other data was warranted.

4

6

7 Data that overlap but are taken at different time resolutions will be need to be 8 averaged over comparable periods before a comparison can be meaningfully made. Data 9 from instruments with widely varying time resolution may still be comparable if the two 10 platforms can be shown to have sampled from the same air mass(es) for the duration of 11 the comparison datum. However, for data generated from an aircraft overflight of a ship 12 or ground site, usefully comparing measurements of vastly different time resolution (e.g., 13 seconds vs. hours) may not be possible.

14

15 Other evaluations are also planned using data from side-by-side flights and 16 overflights. Examples of these might include evaluating the NO_v budget by comparing 17 the sum of measured constituent species (NO+NO₂+PANs+HNO₃+NO₃+N₂O₅+aerosol 18 nitrate) to the NO_v measurements, comparing measured aerosol optical depth to that 19 inferred from a vertical profile of *in situ* aerosol optical data, and comparing ozone 20 profile measurements from LIDARs or balloonsondes to a vertical profile generated from 21 in situ ozone instruments. Certain assumptions need to be satisfied for these kinds of 22 these comparisons to be valid; these assumptions will be taken into account in designing 23 the comparison flight legs and in the subsequent interpretation of the data.

24

Comparison flight planning. Comparison flight planning requires consideration
 of a complex function of individual program requirements, aircraft flight envelopes, air
 traffic control restrictions, weather, instrument readiness, and scientist and flight crew
 coordination. As these are constantly changing parameters during any field campaign,
 some details and actual comparison flight dates will best be decided in the field, in
 conjunction with the Aircraft and Ship Coordination group, and with the individual
 mission scientists from each organization.

8 Some comparisons should be conducted as soon as practical in the mission, so 9 that any recoverable problems can be identified and addressed early on. The main 10 requirement for these early comparisons is that the instruments be tested previously in 11 flight and be working properly. Comparisons throughout the rest of the mission are 12 useful for confirming instrument calibration stability and for comparing in a wider range 13 of environmental conditions.

Comparison flights will take proportionally more or less of an individual science flight depending on individual aircraft endurance. In the past it has often been possible to include comparison legs as an organic part of flight plans addressing other science issues. For example, for a coordinated East Coast regional survey jointly involving the NOAA WP-3D flying from Portsmouth, NH and the DOE G1 from Latrobe, PA, a comparison might easily take place by the aircraft joining up on the westernmost leg of the WP-3D flight and the easternmost leg of the G1 flight.

Ultimately the comparisons are limited to overlapping deployment periods (see the ICARTT <u>deployment schedule</u>), so the scheduling of some pairings may be more flexible than for others. Past experience has shown that longer-endurance aircraft may execute more than one side-by-side comparison exercise during a given flight, but that comes with the additional planning requirements for smooth execution by more than two platforms.

27

Proposed comparisons. A matrix of comparison flights is proposed to best link
 measurements between the various aircraft, ship, and ground-based sites and groups
 participating in the 2004 campaign. Particular importance is given to linking the
 measurements between the heavy aircraft, ship, and ground sites participating in the

1	ITCT-Lagrangian-2k4 task. While it will be advantageous to repeat any given			
2	comparison, time and logistical constraints may dictate only the most important linking			
3	comparisons can be repeated. Extra consideration may be given to repeating a			
4	comparison flight if, on the first try, any substantial disagreements are noted that can be			
5	effectively addressed in the interim by the investigators. The proposed comparisons			
6	include the following pairs, which are also presented graphically in Appendix 1:			
7				
8	aircraft/aircraft:			
9	Navy Twin Otter and MSC Convair	DOE G1 and Navy Twin Otter		
10	COBRA King Air and NOAA WP-3D	NOAA WP-3D and DOE G1		
11	DOE G1 and UMD Duchess	NASA Jetstream-31 and MSC Convair		
12	NOAA DC-3 and NASA DC-8	NASA DC-8 and FAAM BAe-146		
13	NASA DC-8 and NOAA WP-3D	NOAA WP-3D and MSC Convair		
14	FAAM BAe-146 and DLR Falcon	DLR Falcon and CNRS Falcon		
15				
16				
17	aircraft/	ship:		
18	NOAA WP-3D and NOAA Ron Brown	NOAA DC-3 and NOAA Ron Brown		
19	NASA Jetstream-31 and NOAA Ron Brown			
20				
21	aircraft/	ground site:		
22	FAAM BAe-146 and Pico, Azores	COBRA King Air and flux tower		
23	NOAA WP-3D and Castle Springs, NH	(NOAA Ron Brown and Chebogue Pt.)		
24	NOAA WP-3D and Harvard Forest, MA			
25				
26				
27	• Quantifying the comparisons. Putting	ng the comparisons on an objective,		
28	quantitative basis will require the data be accompanied by uncertainty estimates. For the			
29	24-hour data turnaround planned for the comparison exercises, it is recognized that the			
30	data will not have been subjected to the full q	uality checking that characterizes a final		
31	data set. Estimated uncertainties will be correspondingly larger for many, if not all, of			
32	these quick-look, "field-grade" data. Nonetheless, to quantify the degree of data			
33	agreement, uncertainty estimates are required to determine if any observed departures			

1 from fitted slopes of 1.0 and intercepts of 0.0 are consistent within the known errors, or 2 lie outside the known errors and are indicative of one or more instrumental issues. This 3 will facilitate one goal of the comparison exercise, to use the comparisons to identify potentially recoverable problems (leaks, calibration offsets, electrical noise issues) in 4 5 time to address them during the field campaign.

6 To accomplish this, the working group will require that an estimate of data 7 precision and accuracy (or of total combined uncertainty) to be submitted along with the 8 data within 24 hours of the comparison exercise. As the data sets become finalized in the 9 months after the summer 2004 campaign, it is expected that the data and the 10 corresponding uncertainty estimates will change as well. The working group will ensure that the comparison data will be updated in a timely fashion to reflect these changes. 11

12

13 • Comparison data exchange and availability. The ICARTT Data Management 14 working group has agreed on a common format, generally based on the NASA-Ames 15 standard, for the final data. We will use this ICARTT format for the comparison data 16 submission as well. While this may require some additional programming work up-front 17 for first-time users, it will substantially streamline the data exchange process once the 18 necessary procedures have been worked out. There is sufficient experience with this 19 format amongst the ICARTT community that we can offer guidance on its use and in 20 automating individual groups' data output to conform to this format. Please contact the 21 Data Management working group for tools and software support for this new ICARTT 22 format.

23

24 • Comparison data flow. The comparison exercise will not impede the normal 25 and timely turnaround of aircraft data necessary for flight planning and Lagrangian 26 forecasting. Normal field-grade data exchange and posting (data "flow") for a given 27 measurement platform is prescribed by the Data Management working group as follows: 28

29

Normal data flow for a given platform:

30 1. PIs \rightarrow Data manager \rightarrow public data sites (web, ftp); ~ 24-hr turnaround 31

1	A slightly modified data flow will accommodate the informally blind comparison		
2	exercise:		
3			
4	Comparison data flow:		
5	1. PIs \rightarrow Data manager \rightarrow platform-specific folders on Comparison ftp site		
6	2. Gao Chen determines that relevant data are all submitted; emails managers		
7	3 . Data managers \rightarrow public data sites (web, ftp); ~ 24-hr turnaround		
8	4. Gao subsequently posts time-series and x-y plots of comparison data		
9			
10	Note that the 4-step comparison data flow still allows the release of aircraft data on the		
11	same 24-hour nominal schedule as the normal data flow, if all the comparison data are		
12	posted on schedule. If one or more data sets are delayed, Gao will have discretion to		
13	either continue to temporarily embargo all the data beyond 24 hours (to maintain the		
14	"informal, but blind" aspect of the comparison exercise), or to decide to release the		
15	available data and note the comparison of the delayed data set was not necessarily blind		
16	in this instance.		
17	Exceptions to this comparison process may be necessary for optimal forecasting		
18	of transatlantic Lagrangian opportunities. In these cases, if data availability might		
19	otherwise be delayed, Gao may provide a forecast-critical subset of aircraft data (Time,		
20	aircraft position, ambient pressure, and [CO]) to the Lagrangian planning team.		
21	Once all the field-quality data for a given comparison exercise have been		
22	submitted, these plots will be posted to a password-protected part of the ICARTT		
23	comparison web site (accessible here). All study participants will have access to this site;		
24	please contact the webmaster for user name and password information.		
25			
26			
27	3. Post-campaign		
28	After the mission, the working group will ensure that the comparisons plots are		
29	updated as final data become available. Following the Data Exchange WG suggestion,		
30	we will note whether a given comparison uses the initially submitted ("field-grade") data,		
31	or those from subsequent revisions ("preliminary"), up to and including the final data		

1	revisions. These final data will be similarly presented and posted, with consensus PI a	ınd
2	working group conclusions on the degree of comparability, in a public area of the	
3	ICARTT measurement comparison page. Four possible conclusions are anticipated:	
4		
5	1. paired measurements agree quantitatively within stated uncertainties of xx2	76
6	2. paired measurements show significant differences, but were reconciled by	the
7	following means (sampling regimens differ, inlet effects identified, issues	
8	with calibration or data reduction for one or both instruments, etc. Note an	y
9	adjusted uncertainty estimates for final data)	
10	3. paired measurements show significant differences but are not reconciled. I	f
11	possible, justify choice of one data set over the other, or provide consensus	
12	caveats on both, for final data usage.	
13	4. comparison judged not to be a valid test (instrument malfunction, aircraft	
14	overflight did not sample surface layer, spatial inhomogeneity too great, etc	c.)
15		
16	The co-chairs will present a short summary of comparison exercises at the data works	hop
17	scheduled for April 2005. Finally, if data that have been compared during the joint	
18	ICARTT 2004 joint campaign are used in publication, participants have agreed to note	;
19	that a comparison was carried out and briefly state the results thereof.	