

Santa Maria San Rafael Wilderness HRRR - Churs Is MOKE

NOAA's high-resolution weather model that forecasts smoke transport,

visibility and smoke-weather interactions

Oxnard

Barbara

Sheep Mountain Wilderness

LOS ANGELES

Long Beach

Corona

Ontario

Mission Viejo

Torrance

Santa

Clarita

Thousand

Woolsey fire (California) November, 2018

San Francisco skyline

San Francisco skyline during the Camp fire, November 2018

There is an increasing demand for high resolution, frequently updated smoke forecasts over the US for:

- Smoke/air quality alerts (health, outdoor activities)
- Visibility forecasts (transportation)
- Smoke impact on meteorology and weather forecasting
- Solar energy production
- Land-use management

http://weatherwest.com

RAP & HRRR: NOAA's Hourly Updating Weather Forecast Suite

RAP/HRRR-Smoke models

- HRRR-Smoke builds on the operational HRRR by adding a single
 tracer (smoke) to NOAA's experimental RAP and HRRR weather
 forecasting models (based on the Weather Research and
 Forecasting model WRF).
- RAP-Smoke enables forecasting smoke from all fires in North America. It provides boundary conditions for smoke to HRRR-Smoke.
- HRRR-Smoke runs on a high spatial resolution, 3-kilometer grid, to simulate mesoscale flows and smoke dispersion over complex terrain.
- Full coupling between meteorology and smoke: RAP/HRRR-Smoke predict the impact of smoke on radiation, thereby improving weather forecasts. The coupling improves visibility forecasts.
- HRRR-Smoke predicts biomass burning emissions and inline plume rise parameterization based on Fire Radiative Power data obtained from satellite retrievals.
- A rapidly updating data assimilation cycle for meteorology.
- Every hour, a new HRRR-Smoke forecast starts by ingesting the satellite FRP data obtained within 24 hours prior to the forecast start time. HRRR-Smoke forecasts out to 36 hours.

Operational weather forecast models at NCEP: RAP - 13km resolution HRRR, 3km resolution https://rapidrefresh.noaa.gov/

Ingesting the real-time VIIRS and MODIS FRP data to the HRRR-Smoke model

The clustering procedure performs a combination of all **fire radiative power (FRP)** data from **VIIRS** and **MODIS** according to the model spatial resolution and grid configuration.

Biomass burning emissions are estimated as follows: $FRE=FRP \times time$ (fire duration) $M^{[\epsilon]} = FRE_{grid_{(lon,lat)}} \cdot \gamma \cdot EF^{[\epsilon]}$

Averaged satellite FRP data (24 hours), mapped over 3x3km HRRR CONUS grid pixels for August 19, 2018

GOES-East/West satellite fire data analysis (2016)

In HRRR-Smoke, the duration of fires is estimated by using this climatology, unless there are multiple detections of a fire by satellites within 24 hours time period.

Hourly cycle of HRRR: 1-h spin-up for each forecast New weather and smoke forecasts are produced 24 times a day

- Each HRRR analysis starts with previous hour's RAP analysis
- 1-h model integration w/ 15-min radar DA, followed by DA for conventional weather observations and non-variational cloud and hydrometeor analysis
- Simulated 3D smoke fields are cycled between the consecutive HRRR-Smoke forecasts.

HRRR-Smoke: Near-surface smoke forecast for August 19, 2018

This is the HRRR-Smoke forecast of the near-surface fire smoke for August 19, 6pm EDT over the US simulated fine articulate matter (PM2.5 or fire smoke) concentrations and wind at approximately 8m above ground. The HRRR uses a 3-km grid.

This forecast is based on the model simulation of 24 hours from 6pm EDT, August 18, 2018. (rapidrefresh.noaa.gov/hrrr/HRRRsmoke/)

RAP-Smoke Forecast for August 21, 2018

- RAP covers all of North America. The products can be used for Canada, Alaska and other regions.
- RAP uses a13-km grid
- The same meteorology as RAPX;
- Taking advantage of the global satellite data coverage by VIIRS and MODIS;
- Feeds boundary conditions for smoke to the HRRR-Smoke over the CONUS domain;
- Enables capturing smoke transport from Canada and Mexico to CONUS;
- Forecast lead time is up to 39 hours. A new forecast starts every hour.
- The experimental smoke forecast products are displayed at: https://rapidrefresh.noaa.gov/RAPsmoke/

HRRR-Smoke forecast

Visibility is an important forecast product, widely used in the weather community (e.g. ground transportation and aviation)

Advancing HRRR-Smoke

- The frequently updated high-resolution HRRR-Smoke forecasting system allows better representation of the temporal and spatial variability of smoke distribution over the western US.
- The simulation of smoke helps to significantly improve the visibility forecasts by HRRR.
- Including the direct feedback of smoke in the model results in the improvement of weather and visibility forecasting.

Research goals

- Ingest the high-frequency GOES-16/17 Fire Radiative Power data into HRRR-Smoke
- Use the FIREX lab studies to improve the parameterization of the smoldering and flaming phases of the BB emissions; Develop new parameterizations for forecasting weather dependence of the BB emissions
- Verify HRRR-Smoke outputs using the aircraft measurements (FIREX-AQ, WE-CAN, BBFLUX)
- Apply the HRRR-Smoke framework to simulate full gas/aerosol chemistry from fires
- Study the effect of indirect feedback in HRRR-Smoke forecasts

Transition HRRR-Smoke into operations at NWS/NCEP