# Contribution of HONO to New Radical Formation in Los Angeles

C. J. Young<sup>1,2</sup>, R.A. Washenfelder<sup>1,2</sup>, S.S. Brown<sup>2</sup>, J.B. Gilman<sup>1,2</sup>, W.C. Kuster<sup>2</sup>, P. Veres<sup>1,2</sup>, H. Stark<sup>1,2</sup>, J.M. Roberts<sup>2</sup>, J. Flynn<sup>3</sup>, N. Grossberg<sup>3</sup>, B. Lefer<sup>3</sup>, S. Alvarez<sup>3</sup>, B. Rappenglueck<sup>3</sup>, L.H. Mielke<sup>4</sup>, H.D. Osthoff<sup>4</sup>, A.K. Cochran<sup>5</sup>, T.C. VandenBoer<sup>2,6</sup>, O. Pikelnaya<sup>7</sup>, C. Tsai<sup>7</sup>, J. Stutz<sup>7</sup>

<sup>1</sup>Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO
<sup>2</sup>Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO
<sup>3</sup>Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX
<sup>4</sup>Department of Chemistry, University of Calgary, Calgary, AB
<sup>5</sup>North Carolina Agricultural and Technical State University, Greensboro, NC
<sup>6</sup>Department of Chemistry, University of Toronto, Toronto, ON
<sup>7</sup>Department of Atmospheric Sciences, University of California, Los Angeles, CA

# Nitrous Acid (HONO)



• Daytime levels and sources of HONO, and their impact on the oxidative capacity of the atmosphere, remain uncertain.

# HONO Measurements at Pasadena

#### • DOAS (UCLA)

- Used to measure HONO in many field campaigns and intercomparisons.
- Light source on library, ~200m from site.
- Lowest path length ~10km long, 30-40m above the ground surface.
- NitroMAC (Paris)
  - Denuder, followed by derivitization of  $NO_2^-$  and analysis by HPLC.
  - Similar to LOPAP technique.
  - Participated in intercomparison at Euphore chamber.
- Acid CIMS (NOAA)
  - Newly developed field instrument.
  - Acetate ionization of  $NO_2^{-1}$  provides a measurement of HONO.
  - Used in fire lab study and successfully compared to FTIR.

#### • IBBCEAS (NOAA)

- Incoherent BroadBand Cavity-Enhanced Absorption Spectoscopy.
- Newly developed field instrument.
- Conceptually proven in laboratory studies.
- No published field results to date.

# Principle of IBBCEAS HONO Measurement





# Principle of IBBCEAS HONO Measurement

- IBBCEAS is a useful optical technique in areas where multiple species absorb.
- In much of the visible and near-UV, NO<sub>2</sub> absorbs broadly and prevents detection of other species using optical techniques such as cavity ring-down spectroscopy.



#### CalNex Pasadena Setup



#### **Comparison of HONO Measurements**



# **HONO** Vertical Distribution



## **Comparison of HONO Measurements**



 Removing the three vertical gradient days at the end of the campaign brings the in situ instruments into agreement, within 10%. • Good agreement between two in situ instruments.

• CIMS measures higher at the end of the campaign when distinct vertical gradients were observed (CIMS ~6-7m below IBBCEAS).



# **Comparison of HONO Measurements**



 In situ instruments measure higher HONO than the lowest DOAS path.

• Similar results are obtained when last three days of campaign are excluded.

#### **Possible Reasons for Discrepancy**

- Vertical HONO gradient due to ground source.
- ~5km averaging distance of DOAS path.

• Based on the comparative data, the in situ HONO instruments performed well and data obtained by these instruments can be used to determine a budget of new radical production.

# **Contributions to Radical Formation**

• Excellent availability of measurements from Pasadena ground site to create a detailed budget of new radical formation.

O<sub>3</sub> (U Houston) j Values (U Houston) HCHO (U Houston) HONO (NOAA)  $O(^{1}D) + H_{2}O \longrightarrow 2 OH$  $HONO \xrightarrow{hv} OH + NO$  $HCHO \xrightarrow{hv} HO_{2} + HCOO$ 

Alkenes (GC, NOAA) CHOCHO (NOAA)  $CH_3CHO$  (GC, NOAA) CINO<sub>2</sub> (U Calgary) Alkene +  $O_3 \longrightarrow OH + ROO$ CHOCHO  $\xrightarrow{hv}$  2 HCOO CH<sub>3</sub>CHO  $\xrightarrow{hv}$  HO<sub>2</sub> + CH<sub>3</sub>CHOO CINO<sub>2</sub>  $\xrightarrow{hv}$  CI + NO<sub>2</sub>

\*  $jCINO_2$  and jCHOCHO for Pasadena determined as a function of  $jNO_2$  and  $jO_3$ , determined from aircraft measurements.

\* Much of this data is still preliminary.

#### **Contributions to OH Formation**



# **Speciated Contribution of VOCs**





- Biogenics account for 79% of new radicals generated from the reaction of VOCs plus ozone.
- Some highly reactive alkenes not measured (e.g. pentenes), but likely make a minor contribution.

# **Radical Sources in Other Locations**

| Location                     | HONO<br>Photolysis | O( <sup>1</sup> D) + O <sub>3</sub> | HCHO<br>Photolysis | O <sub>3</sub> +<br>Alkenes | Other | Reference                |
|------------------------------|--------------------|-------------------------------------|--------------------|-----------------------------|-------|--------------------------|
| Pasadena,<br>2010            | 43                 | 33                                  | 18                 | 5                           | 3     |                          |
| Milan <i>,</i><br>1998       | 16                 | 20                                  | 34                 | 8                           | 20    | Alicke et<br>al., 2002   |
| Pabstum,<br>Germany,<br>1998 | 17                 | 39                                  | 37                 | 6                           | 2     | Alicke et<br>al., 2003   |
| Mexico City,<br>2003         | 12                 | 19                                  | 19                 | 12                          | 38    | Volkamer<br>et al, 2010  |
| Mexico City,<br>2006         | 34                 | 6                                   | 24                 | 19                          | 17    | Dusanter<br>et al., 2009 |

• Estimated contribution of HONO at Pasadena is unusually high.

• All other HONO measurements included in radical source budgets were made using DOAS.

# Nighttime vs Daytime HONO



• The portion of radicals that result from nighttime accumulated HONO accounts for 12% of the total radicals produced from HONO or 5% of the total new radicals.

• The remaining new radicals from HONO are attributed to the much more uncertain daytime HONO measurements.

• This uncertain radical source is up to 38% of the total new radicals produced at the Pasadena ground site.

# Impact of Daytime HONO



 DOAS measures an average concentration over 5km at heights >30m above the in situ instruments.

# Impact of Daytime HONO

• Assuming that DOAS HONO is more representative and the daytime level is approximately 100 pptv, the budget of new radical formation changes dramatically.

- A small change in measured levels of daytime HONO has a large impact on the radical budget.
- The observed vertical gradient of HONO results in large differences in radical budgets with altitude.



• It is important to better understand daytime HONO and its vertical gradient to further constrain its importance to new radical formation.

#### **Nighttime Radical Reservoirs**



# Nighttime Radical Reservoirs



\*June 2 05:00 local time El Monte airport missed approach

# **Summary and Conclusions**

• HONO was successfully measured at Pasadena using two new in situ instruments.

- The contribution of HONO to new radical formation is estimated at 43% using data from the IBBCEAS in situ instrument.
  - This estimation is higher than those found in other radical source budgets, all of which were constructed using DOAS data.
  - The bulk of HONO radical production is due to daytime HONO.
  - Using daytime HONO as measured by the DOAS, HONO accounts for 13% of new radical formation.
- Improved understanding of daytime HONO and spatial gradients is necessary to better constrain radical budgets.
- Nighttime accumulated radical sources account for about 10% of new radicals at Pasadena ground site.
- Vertical profiles are important when considering the contribution of nighttime radical reservoirs.

## Acknowledgements

*IBBCEAS Instrument development* Nick Wagner Andy Langford NOAA Atmospheric Chemistry and Climate Program

Pasadena Ground Site Jose Jiminez, Joost De Gouw, Jochen Stutz, John Seinfeld California Institute of Technology California Air Resources Board

*Funding for CJY* Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship

