Title: Vertical distribution of sulfur species (SO2+sulfate) seen in AEROCOM models Qian Tan^{1,2}, Mian Chin³, Valentina Aquilla³, Michael Hopfner⁴, Andrew Rollins⁵ ## Abstract We analyzed the vertical distribution of two primary sulfur species, SO_2 (gas phase) and sulfate (SO_4 , aerosol phase) in the UTLS from 12 AEROCOM-Phase II models. For both species, the model-to-model difference increases with altitude and with the distance away from the source regions, while SO_2 show larger differences. Comparison with MIPAS SO_2 retrievals suggested most models' simulated SO_2 is lower in the stratosphere. One possible reason for the low bias is some missing photochemical processes of sulfur species in the mid-upper stratosphere by most models. Modeled sulfur in the aerosols phase agrees better with measurements from the CARIBIC campaign over the years. We further compared the emission, wet and dry deposition from those models to estimate the possible reason for this large model-to-model divergence. We used SO_2 measurement from the 2015 VIRGAS field campaign and MERRA-2 to bridge the simulation time difference in the AEROCOM models. ¹Bay Area Environmental Research Institute, Moffett Field, CA ² NASA Ames Research Center, Moffett Field, CA ³NASA Goddard Space Flight Center, Greenbelt, MD ⁴Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ⁵ NOAA, Earth System Research Laboratory, Boulder, CO