## Evaluation and bias-correction techniques for forecasting surface O3 and PM2.5 During the TEXAQS-II experiment of 2006



Irina Djalalova<sup>1,2</sup>, James Wilczak<sup>1,</sup> Stuart Mckeen<sup>3,2</sup>, Georg Grell<sup>4,2</sup>, Steven Peckham<sup>4,2</sup>, Mariusz Pagowski<sup>4,2</sup>, Luca DelleMonache<sup>5</sup>, Jeff McQueen<sup>6</sup>, Youhua Tang<sup>6</sup>, Pius Lee<sup>7</sup>, John McHenry<sup>8</sup>, Wanmin Gong<sup>9</sup>, Veronique Bouchet<sup>10</sup>, Rohit Mathur<sup>11</sup>

- 1 NOAA/ESRL/Physical Sciences Division, CO, USA
- 2 Also in CIRES, University of Colorado, Boulder, CO, USA
- 3 NOAA/ESRL/Chemical Sciences Division, CO, USA
- 4 NOAA/ESRL/Global Systems Division, CO, USA
- 5 NCAR, CO, USA
- 6 NOAA/NWS/Environmental Modeling Center, Maryland, USA
- 7 NOAA/ARL, Maryland, USA
- 8 Baron AMS, NC, USA
- 9 Environment Canada, Ontario, Canada
- 10 Environmental Canada, Quebec, Canada
- 11 EPA/NERL, NC, USA

### **TEXAQS** August 12 – September 30, 2006

http://www.esrl.noaa.gov/psd/programs/2006/texaqs/verification/

#### **OBSERVATIONS** from EPA AIRNOW:

119 sites of OZONE

38 sites of PM2.5

### **MODELS** for Verification:

NOAA NWS/NCEP,12 km NAM/CMAQ NOAA ESRL/GSD 12 & 36 km, WRF/CHEM Canadian CMC, 21 km CHRONOS Canadian CMC, 28 km, AURAMS Baron AMS, 15 km, MM5/MAQSIP-RT University of Iowa, 12 km WRF/STEM



## ENSEMBLES

For each site, day and hour:

- Ensemble =  $\Sigma$ (models)
- 7DRM\_Ensemble = Σ(7days\_bias\_corrected models)
- KF\_Ensemble = Σ (7days\_KF\_models)



As the EPA standard, daily 8-hour maximum ozone is calculated for each day by using a sliding window to produce a time-series of 8-hour averaged ozone and then selecting the maximum of these values in the 24 hour window corresponding to 10-34 UTC.

### Singular Value Decomposition (SVD) Method



Note: 1) weights are different for each hour of the forecast cycle
2) weights are determined using the previous 7 days of data
3) single set of weights is determined for all sites

SVD\_Ensemble=  $\Sigma$ (weight \* Model) + biasSVD\_7DRM\_Ensemble =  $\Sigma$ (weight \* 7DRM\_Model) + biasSVD\_KF\_Ensemble=  $\Sigma$ (weight \* KF\_Model) + bias

r rm t Sm







#### **Ensemble 8 hours MAX OZONE**

SVD\_KF\_Ensemble 8 hours MAX OZONE









To eliminate the Sahara dust influence in the data, we omitted  $PM_{2.5}$  values between August 27-30, 2006, as shown in the black box, for all sites south of 31 degrees latitude.



Pm 2.5 has a double spike in the diurnal cycle, which is following by all ensembles and individual models.



Not a single raw or 7DRM bias corrected model is able to perform better than persistence.

Only the KF ensemble and SVD\_KF ensemble are capable of significantly beating the persistence forecast.



# CONCLUSIONS

- Ensemble beats all individual models.
- Bias Corrected models have better skill for RMSE and for correlation than uncorrected ones.
- 7DRM\_Ensemble, KF\_Ensemble and especially SVD\_KF\_Ensemble significally improve all skills.

• For PM2.5, 7DRM\_Ensemble and especially KF\_Ensemble and SVD\_KF\_Ensemble are the only models that perform better than persistence in terms of RMSE and correlation coefficient.

• All Ensembles use data only from 7 previous days so can be calculated on a daily basis during future experiments.