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What created the (model) PM, SO, at Harrow? Compare the different operators as a function of time. Note that the vertical scale is
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ice contours, cross-sections, and 3D mapping of these mass
tracking fields heip show how the particulate matter forms, in the
model, and gives hypotheses for testing against the observations.
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. The mass tracking depicted
Mean Error: 4.592 at left suggests that the
transport terms (advection,
diffusion) have the largest
impact on PM, SO, mass.
Small errors in the transport
direction (e.g. plume
buoyancy height, wind
speed and direction,
strength of vertical
diffusion) may therefore
have a large impact on the
PM, SO, concentration.
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Conclusions (for a work in progress):
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