Tropical tropospheric bromine and stratospheric injection of Br_y from VSL compounds inferred from CONTRAST Ross Salawitch¹, Julie Nicely¹, Dan Anderson¹, Tim Canty¹, Pam Wales¹, Elliot Atlas², Sue Schauffler³, Valeria Donets², Richard Lueb², Maria Navarro², Eric Apel³, Nicola Blake⁴, Alan Hills³, Rebecca Hornbrook³, Daniel Riemer², Dexian Chen⁵, Greg Huey⁵, David Tanner⁵, Rainer Volkamer⁶, Theodore Koenig⁶, Sunil Baidar⁶, Barbara Dix⁶, Andrew Weinheimer³, Glenn Wolfe^{7,8}, Tom Hanisco⁷, Sam Hall³, Kirk Ullmann³, Rafael Fernandez^{9,10}, Alfonso Saiz-Lopez⁹, Doug Kinnison³, Jean-Francois Lamarque³, Shawn Honomichl³, and Laura Pan³ ¹University of Maryland, College Park, Maryland, USA ²University of Miami, Miami, Florida, USA ³National Center for Atmospheric Research, Boulder, Colorado, USA ⁴University of California, Irvine, California, USA ⁵Georgia Institute of Technology, Atlanta, Georgia, USA ⁶University of Colorado, Boulder, Colorado, USA ⁷NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ⁸Joint Center for Earth Systems Technology, Baltimore County, Maryland, USA ⁹Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain ¹⁰National Research Council (CONICET), Mendoza, Argentina The CONvective TRansport of Active Species in the Tropics (CONTRAST) field campaign was designed to quantify the abundance of very short lived (VSL) bromocarbons in the marine boundary layer (MBL) of the Tropical Western Pacific, the variation with respect to altitude of these compounds from the MBL to the base of the tropopause transition layer, and the abundance of BrO throughout the tropical troposphere. Here we examine the theoretical understanding of VSL source gases by comparing measurements of these bromocarbons provided by two instruments, AWAS and TOGA, to model values found using CAM-Chem. We examine also the bromine budget in the tropical troposphere: i.e., consistency between tropospheric loss of these compounds and the appearance of products using observations of BrO from two other instruments, CIMS and DOAS. Finally, implications for supply of bromine to the lower stratosphere via source gas and product gas injection will be examined, based largely on data collected during flights that probed the extra-tropical, lower stratosphere.