Q7: What emissions from human activities lead to ozone depletion?

Certain industrial processes and consumer products result in the emission of "halogen source gases" to the atmosphere. These gases bring chlorine and bromine to the stratosphere, which cause depletion of the ozone layer. For example, chlorofluorocarbons (CFCs), once used in almost all refrigeration and air conditioning systems, eventually reach the stratosphere, where they are broken apart to release ozone-depleting chlorine atoms. Other examples of human-produced ozone-depleting gases are the "halons," which are used in fire extinguishers and contain ozone-depleting bromine atoms. The production and consumption of all principal halogen source gases by human activities are regulated worldwide under the Montreal Protocol.

Principal human-produced chlorine and bromine gases. Human activities cause the emission of halogen source gases that contain chlorine and bromine atoms. These emissions into the atmosphere ultimately lead to stratospheric ozone depletion. The source gases that contain only carbon, chlorine, and fluorine are called "chlorofluorocarbons," usually abbreviated as CFCs. CFCs, along with carbon tetrachloride (CCl₄) and methyl chloroform (CH₃CCl₃), historically have been the most important chlorine-containing gases that are emitted by human activities and destroy stratospheric ozone (see Figure Q7-1). These and other chlorine-containing gases have been used in many applications, including refrigeration, air conditioning, foam blowing, aerosol propellants, and cleaning of metals and electronic components. These activities have typically caused the emission of halogen-containing gases to the atmosphere.

Another category of halogen source gases contains bromine. The most important of these are the "halons" and methyl bromide (CH₃Br). Halons are halogenated hydrocarbon gases originally developed to extinguish fires. Halons are widely used to protect large computers, military hardware, and commercial aircraft engines. Because of these uses, halons are often directly released into the atmosphere. Halon-1211 and halon-1301 are the most abundant halons emitted by human activities (see Figure Q7-1). Methyl bromide, used primarily as an agricultural fumigant, is also a significant source of bromine to the atmosphere.

Human emissions of the principal chlorine- and bromine-containing gases have increased substantially since the middle of the 20th century (see Q16). The result has been global ozone depletion, with the greatest losses occurring in polar regions (see Q11 to Q13).

Other human sources of chlorine and bromine. Other chlorine- and bromine-containing gases are released regularly in human activities. Common examples are the use of chlorine gases to disinfect swimming pools and wastewater, fossil fuel burning, and various industrial processes. These activities do not contribute significantly

to stratospheric amounts of chlorine and bromine because either the global source is small or the emitted gases are short-lived (very reactive or highly soluble) and, therefore, are removed from the atmosphere before they reach the stratosphere.

Natural sources of chlorine and bromine. There are a few halogen source gases present in the stratosphere that have large natural sources. These include methyl chloride (CH₃Cl) and methyl bromide (CH₃Br), both of which are emitted by oceanic and terrestrial ecosystems. Natural sources of these two gases contribute about 17% of the chlorine currently in the stratosphere and about 30% of the bromine (see Figure Q7-1). Very short-lived source gases containing bromine, such as bromoform (CHBr₂), are also released to the atmosphere primarily from the oceans. Only a small fraction of these emissions reaches the stratosphere, because these gases are rapidly removed in the lower atmosphere. The contribution of these very short-lived gases to stratospheric bromine is estimated to be about 24%, but this has a large uncertainty. The contribution to stratospheric chlorine of short-lived chlorinated gases from natural and human sources is much smaller (< 3%) and is included in the "Other gases" category in Figure Q7-1. Changes in the natural sources of chlorine and bromine since the middle of the 20th century are not the cause of observed ozone depletion.

Lifetimes and emissions. After emission, halogen source gases are either naturally removed from the atmosphere or undergo chemical conversion. The time to remove or convert about 60% of a gas is often called its atmospheric "lifetime." Lifetimes vary from less than 1 year to 100 years for the principal chlorine- and bromine-containing gases (see Table Q7-1). Gases with the shortest lifetimes (e.g., the HCFCs, methyl bromide, methyl chloride, and the very short-lived gases) are substantially destroyed in the troposphere, and therefore only a fraction of each emitted gas contributes to ozone depletion in the stratosphere.

The amount of a halogen source gas present in the atmosphere depends on the lifetime of the gas and the

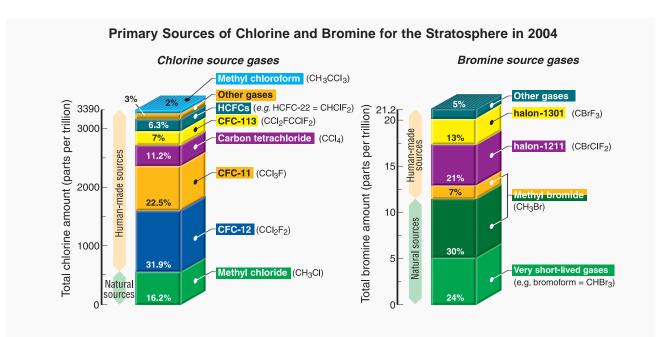


Figure Q7-1. Stratospheric source gases. A variety of gases transport chlorine and bromine into the stratosphere. These gases, called halogen source gases, are emitted from natural sources and by human activities. These partitioned columns show how the principal chlorine and bromine source gases contribute to the respective total amounts of chlorine and bromine as measured in 2004. Note the large difference in the vertical scales: total chlorine in the stratosphere is 160 times more abundant than total bromine. For chlorine, human activities account for most that reaches the stratosphere. The CFCs are the most abundant of the chlorine-containing gases released in human activities. Methyl chloride is the most important natural source of chlorine. HCFCs, which are substitute gases for CFCs and also are regulated under the Montreal Protocol, are a small but growing fraction of chlorine-containing gases. The "Other gases" category includes minor CFCs and short-lived gases. For bromine that reaches the stratosphere, halons and methyl bromide are the largest sources. Both gases are released in human activities. Methyl bromide has an additional natural source. Natural sources are a larger fraction of total bromine than of total chlorine. (The unit "parts per trillion" is used here as a measure of the relative abundance of a gas in air: 1 part per trillion indicates the presence of one molecule of a gas per trillion other air molecules.)

amount emitted to the atmosphere. Emissions vary greatly for the principal source gases, as indicated in Table Q7-1. Emissions of most gases regulated by the Montreal Protocol have decreased since 1990, and emissions from all regulated gases are expected to decrease in the coming decades (see Q16).

Ozone Depletion Potential. The halogen source gases in Figure Q7-1 are also known as "ozone-depleting substances" because they are converted in the stratosphere to reactive gases containing chlorine and bromine (see Q8). Some of these reactive gases participate in reactions that destroy ozone (see Q9). Ozone-depleting substances are compared in their effectiveness to destroy stratospheric ozone using the "Ozone Depletion Potential" (ODP), as listed in Table Q7-1 (see Q18). A gas with a larger ODP has a greater potential to destroy ozone over its lifetime in the atmosphere. The ODP is calculated on a "per mass" basis for each gas relative to CFC-11, which

has an ODP defined to be 1. Halon-1211 and halon-1301 have ODPs significantly larger than CFC-11 and most other emitted gases, because bromine is much more effective overall (about 60 times) on a per-atom basis than chlorine in chemical reactions that destroy ozone in the stratosphere. The gases with small ODP values generally have short atmospheric lifetimes or fewer chlorine and bromine atoms. The production and consumption of all principal halogen source gases by humans are regulated under the provisions of the Montreal Protocol (see Q15).

Fluorine and iodine. Fluorine and iodine are also halogen atoms. Many of the source gases in Figure Q7-1 also contain fluorine atoms in addition to chlorine or bromine. After the source gases undergo conversion in the stratosphere (see Q6), the fluorine content of these gases is left in chemical forms that do not cause ozone depletion. Iodine is a component of several gases that are naturally emitted from the oceans. Although iodine can

Table Q7-1. Atmospheric lifetimes, emissions, and Ozone Depletion Potentials of halogen source gases. ^a

Halogen Source Gas	Atmospheric Lifetime (years)	Global Emissions in 2003 ^b	Ozone Depletion Potential (ODP) ^d
Chlorine			
CFC-12	100	101-144	1
CFC-113	85	1-15	1
CFC-11	45	60-126	1
Carbon tetrachlo	oride		
(CCl_4)	26	58-131	0.73
HCFCs	1-26	312-403	0.02-0.12
Methyl chlorofo	rm		
(CH_3CCl_3)	5	~20	0.12
Methyl chloride	1.0	1700-13600	0.02
Bromine			
Halon-1301	65	~3	16
Halon-1211	16	7-10	7.1
Methyl bromide			
(CH_3Br)	0.7	160-200	0.51
Very short-lived	gases		
(e.g., CHBr ₃)	< 0.5	С	С

^a Includes both human activities and natural sources.

participate in ozone destruction reactions, these iodinecontaining source gases generally have very short lifetimes and, as a result, most are removed in the troposphere before they reach the stratosphere.

Other gases. Other gases that influence stratospheric ozone abundances also have increased in the stratosphere as a result of human activities. Important examples are methane (CH₄) and nitrous oxide (N₂O), which react in the stratosphere to form water vapor and reactive hydrogen, and nitrogen oxides, respectively. These reactive products also participate in the production and loss balance of stratospheric ozone (see Q2). The overall effect of increases in these other gases on ozone is much smaller than that caused by increases in chlorine- and bromine-containing gases from human activities (see Q18).

Heavier-Than-Air CFCs

CFCs and other halogen source gases reach the stratosphere despite the fact that they are "heavier than air." All the principal source gases are emitted and accumulate in the lower atmosphere (troposphere). The distributions of gases in the troposphere and stratosphere are not controlled by the molecular weight of the gases because air is in continual motion in these regions as a result of winds and convection. Air motions ensure that most source gases become horizontally and vertically well mixed throughout the troposphere in a matter of months. It is this well-mixed air that enters the lower stratosphere from upward air motions in tropical regions, bringing with it source gas molecules emitted from a wide variety of locations on Earth's surface.

Atmospheric measurements confirm that halogen source gases with long atmospheric lifetimes are well mixed in the troposphere and are present in the stratosphere (see Figure Q8-2). The amounts found in these regions are consistent with the emissions estimates reported by industries and governments. Measurements also show that gases that are "lighter than air," such as hydrogen (H_2) and methane (CH_4), are also well mixed in the troposphere, as expected. Only at altitudes well above the troposphere and stratosphere (above 85 kilometers (53 miles)), where much less air is present, does the influence of winds and convection diminish to the point where heavy gases begin to separate from lighter gases as a result of gravity.

Emission in gigagrams per year (1 gigagram = 10⁹ grams = 1000 metric tons).

Estimates are uncertain for most species.

d Values are calculated for emissions of equal mass for each gas.